Patents by Inventor Yukio Homoto

Yukio Homoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7390917
    Abstract: A method of producing a mixture of fluorine-containing (meth)acrylate esters, the method including: (A) a telomerization step of obtaining the mixture of the fluoroalkyl iodide telomers; (B) an ethylene addition step of adding ethylene to the mixture of the fluoroalkyl iodide telomers obtained in the step (A) to give a mixture of ethylene adducts; and (C) an esterification step of reacting the mixture of the ethylene adducts obtained in the step (B) with a (meth)acrylate compound to obtain fluorine-containing (meth)acrylate esters.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: June 24, 2008
    Assignee: Daikin Industries, Ltd.
    Inventors: Yukio Homoto, Kunitada Tanaka
  • Patent number: 7317071
    Abstract: Processes for producing a fluoromonomer from a fluoropolymer, among which one that can be carried out more simply is a process wherein thermal decomposition of a fluoropolymer is preformed by means of a rotary kiln (5) so as to produce a fluoromonomer, the process comprising feeding a fluoropolymer and steam (3) into a rotary kiln and heating the fluoropolymer.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: January 8, 2008
    Assignee: Daikin Industries, Ltd.
    Inventors: Takuya Ichida, Yukio Homoto
  • Patent number: 7038095
    Abstract: A mixture of fluoroalkyl iodide telomers represented by the formula: Rf(CF2CF2)nI wherein Rf represents a fluoroalkyl group whose number of carbon atoms is in the range of 1 to 10, with the polymerization degree n equal to or more than k that is an integer of 3 or more, is obtained by reacting a fluoroalkyl iodide with tetrafluoroethylene in a first reactor followed by fractionating a first reaction mixture which contains fluoroalkyl iodide telomers of low polymerization degree, as well as by reacting the telomer with n of (k?1) separated from the first reaction mixture with tetrafluoroethylene in the second reactor.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: May 2, 2006
    Assignee: Daikin Industries, Ltd.
    Inventors: Yukio Homoto, Kunitada Tanaka
  • Publication number: 20060020106
    Abstract: Processes for producing a fluoromonomer from a fluoropolymer, among which one that can be carried out more simply is a process wherein thermal decomposition of a fluoropolymer is preformed by means of a rotary kiln (5) so as to produce a fluoromonomer, the process comprising feeding a fluoropolymer and steam (3) into a rotary kiln and heating the fluoropolymer.
    Type: Application
    Filed: February 27, 2003
    Publication date: January 26, 2006
    Applicant: Daikin Industries, Ltd.
    Inventors: Takuya Ichida, Yukio Homoto
  • Publication number: 20050148790
    Abstract: A mixture of fluoroalkyl iodide telomers represented by the formula: Rf(CF2CF2)nI wherein Rf represents a fluoroalkyl group whose number of carbon atoms is in the range of 1 to 10, with the polymerization degree n equal to or more than k that is an integer of 3 or more, is obtained by reacting a fluoroalkyl iodide with tetrafluoroethylene in a first reactor followed by fractionating a first reaction mixture which contains fluoroalkyl iodide telomers of low polymerization degree, as well as by reacting the telomer with n of (k?1) separated from the first reaction mixture with tetrafluoroethylene in the second reactor.
    Type: Application
    Filed: March 9, 2005
    Publication date: July 7, 2005
    Applicant: Daikin Industries, Ltd.
    Inventors: Yukio Homoto, Kunitada Tanaka
  • Patent number: 6849163
    Abstract: There is provided a process for recovering tetrafluoroethylene wherein an amount of energy required to obtain TFE is reduced.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: February 1, 2005
    Assignee: Daikin Industries, Ltd.
    Inventors: Shigeyuki Yoshii, Yukio Homoto
  • Patent number: 6841140
    Abstract: As to a reactor which is used in a process for producing hydrogen fluoride through a reaction of fluorite with sulfuric acid, and which comprises means for applying a shearing force to a content therein between the means and an inner surface thereof, a metal material is used for at least a portion of a part of the means which part is opposed to the inner surface, the metal material comprising tungsten carbide and a material comprising at least one element, or an alloy comprising two or more elements, selected from the group consisting of nickel, chromium, cobalt, iron, tungsten and carbon, the metal material comprising 30 to 90% by weight of tungsten carbide. Thereby, it becomes possible to reduce the wear of an edge of the means for applying the shearing force to the content (the reaction mixture) between the means and the inner surface.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: January 11, 2005
    Assignee: Daikin Industries, Ltd.
    Inventors: Hironobu Nishimura, Toshinobu Takeuchi, Yukio Homoto, Norio Ema
  • Publication number: 20040049089
    Abstract: A mixture of fluoroalkyl iodide telomers represented by the formula: Rf(CF2CF2)nI wherein Rf represents a fluoroalkyl group whose number of carbon atoms is in the range of 1 to 10, with the polymerization degree n equal to or more than k that is an integer of 3 or more, is obtained by reacting a fluoroalkyl iodide with tetrafluoroethylene in a first reactor followed by fractionating a first reaction mixture which contains fluoroalkyl iodide telomers of low polymerization degree, as well as by reacting the telomer with n of (k−1) separated from the first reaction mixture with tetrafluoroethylene in the second reactor.
    Type: Application
    Filed: July 18, 2003
    Publication date: March 11, 2004
    Inventors: Yukio Homoto, Kunitada Tanaka
  • Publication number: 20030124047
    Abstract: As to a reactor which is used in a process for producing hydrogen fluoride through a reaction of fluorite with sulfuric acid, and which comprises means for applying a shearing force to a content therein between the means and an inner surface thereof, a metal material is used for at least a portion of a part of the means which part is opposed to the inner surface, the metal material comprising tungsten carbide and a material comprising at least one element, or an alloy comprising two or more elements, selected from the group consisting of nickel, chromium, cobalt, iron, tungsten and carbon, the metal material comprising 30 to 90% by weight of tungsten carbide. Thereby, it becomes possible to reduce the wear of an edge of the means for applying the shearing force to the content (the reaction mixture) between the means and the inner surface.
    Type: Application
    Filed: January 2, 2003
    Publication date: July 3, 2003
    Inventors: Hironobu Nishimura, Toshinobu Takeuchi, Yukio Homoto, Norio Ema
  • Publication number: 20030098228
    Abstract: There is provided a process for recovering tetrafluoroethylene wherein an amount of energy required to obtain TFE is reduced.
    Type: Application
    Filed: October 7, 2002
    Publication date: May 29, 2003
    Inventors: Shigeyuki Yoshii, Yukio Homoto
  • Patent number: 6180840
    Abstract: A production method in which reaction processes are divided into two regions comprising one reaction region where mainly perchloroethylene is made to react with HF in a vapor phase in the presence of a catalyst and the other reaction region where HCFC-123 (CF3CHCl2) and/or HCFC-124 (CF3CFHCl) is made to react with HF in a vapor phase in the presence of a catalyst, the former region being kept at a higher pressure and the latter region at a lower pressure during the reaction procedure. By this method it is possible to keep the conversion of perchloroethylene at a high level while securing the life of a catalyst, and it is also possible to raise the selectivity of HFC-125. This is a method of producing HFC-125 in which the content of CFC-115 is lowered to not more than 15 vol % of the total amount of HFC-125 and CFC-115, and then CFC-115 is made to react with hydrogen in the presence of a catalyst.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: January 30, 2001
    Assignee: Daiken Industries Ltd.
    Inventors: Takashi Shibanuma, Yukio Homoto, Satoshi Komatsu, Toshikazu Yoshimura
  • Patent number: 6049016
    Abstract: There is provided a process for producing HFC-125 and/or HCFC-124 from PCE, characterized by the first reaction step of fluorinating PCE in the presence of catalyst in a liquid phase to form HCFC-123 and/or HCFC-122 and the second reaction step of fluorinating HCFC-123 and/or HCFC-122 in the presence of catalyst in a vapor phase to form HFC-125 and/or HCFC-124.This process is improved in the yield of objective products, and life of catalyst, and the controllability of reaction temperature.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: April 11, 2000
    Assignee: Daikin Industries Ltd.
    Inventors: Toshikazu Yoshimura, Yukio Homoto, Yasufu Yamada, Takehide Tsuda, Takashi Shibanuma
  • Patent number: 6011185
    Abstract: There is provided a process for producing HFC-125 and/or HCFC-124 from PCE, characterized by the first reaction step of fluorinating PCE in the presence of catalyst in a liquid phase to form HCFC-123 and/or HCFC-122 and the second reaction step of fluorinating HCFC-123 and/or HCFC-122 in the presence of catalyst in a vapor phase to form HFC-125 and/or HCFC-124.This process is improved in the yield of objective products, and life of catalyst, and the controllability of reaction temperature.
    Type: Grant
    Filed: August 20, 1997
    Date of Patent: January 4, 2000
    Assignee: Daikin Industries Ltd.
    Inventors: Toshikazu Yoshimura, Yukio Homoto, Yasufu Yamada, Takehide Tsuda, Takashi Shibanuma
  • Patent number: 5849963
    Abstract: According to the method for producing difluoromethane and 1,1,1,2-tetrafluoroethane, having the steps of:(1) reacting methylene chloride and 1,1,2-trichloroethylene with hydrogen fluoride in a vapor phase In the presence of a fluorinating catalyst and 1,1,1,2-tetrafluoroethane in a first reactor; and(2) reacting 1,1,1-trifluorochloroethane with hydrogen fluoride in a vapor phase in the presence of a fluorinating catalyst in a second reactor, and supplying the reaction mixture from the second reactor to the first reactor, HFC-32 can be obtained in high conversion and high selectivity by fluorinating HCC-30 using commonly a large (excess) amount of HF which is required for producing HFC-134a.
    Type: Grant
    Filed: June 7, 1996
    Date of Patent: December 15, 1998
    Assignee: Daikin Industries, Ltd.
    Inventors: Yukio Homoto, Kunitada Tanaka, Takashi Shibanuma, Satoshi Komatsu, Satoshi Koyama
  • Patent number: 5849160
    Abstract: Pentafluoroethane (HFC-125) is more effectively and more simply separated from a reaction mixture in a process of producing HFC-125.A gas mixture containing perchloroethylene (PCE), HFC-125, hydrogen chloride (HCl) and hydrogen fluoride (HF) is passed through the first condensation stage to obtain the first vapor phase, which is passed through the second condensation stage to obtain the second vapor phase mainly containing HFC-125 and HCl and the second liquid phase, which is passed to a distillation stage to obtain a top fraction mainly containing HFC-125 and HCl and a bottom fraction containing the rest of the second liquid phase which bottom fraction is substantially free from HFC-125 and HCl, and HCl is separated out of the second vapor phase portion and the top fraction to obtain HFC-125, a concentration of PCE in the second liquid phase being such that it does not separate into immiscible liquid phases.
    Type: Grant
    Filed: July 2, 1997
    Date of Patent: December 15, 1998
    Assignee: Daikin Industries, Ltd.
    Inventors: Yukio Homoto, Takashi Shibanuma, Masanobu Nishitsuji
  • Patent number: 5847244
    Abstract: A production method in which reaction processes are divided into two regions comprising one reaction region where mainly perohloroethylene is made to react with HF in a vapor phase in the presence of a catalyst and the other reaction region where HCFC-123 (CF.sub.3 CHCl.sub.2) and/or HCFC-124 (CF.sub.3 CFHCl) is made to react with HF in a vapor phase in the presence of a catalyst, the former region being kept at a higher pressure and the latter region at a lower pressure during the reaction procedure. By this method it is possible to keep the conversion of perchloroethylene at a high level while securing the life of a catalyst, and it is also possible to raise the selectivity of HFC-125. This is a method of producing HFC-125 in which the content of CFC-115 is lowered to not more than 15 vol % of the total amount of HFC-125 and CFC-115, and then CFC-115 is made to react with hydrogen in the presence of a catalyst.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: December 8, 1998
    Assignee: Daikin Industries, Ltd.
    Inventors: Takashi Shibanuma, Yukio Homoto, Satoshi Komatsu, Toshikazu Yoshimura
  • Patent number: 5750809
    Abstract: A production method in which reaction processes are divided into two regions comprising one reaction region where mainly perchloroethylene is made to react with HF in a vapor phase in the presence of a catalyst and the other reaction region where HCFC-123 (CF.sub.3 CHCl.sub.2) and/or HCFC-124 (CF.sub.3 CFHCl) is made to react with HF in a vapor phase in the presence of a catalyst, the former region being kept at a higher pressure and the latter region at a lower pressure during the reaction procedure. By this method it is possible to keep the conversion of perchloroethylene at a high level while securing the life of a catalyst, and it is also possible to raise the selectivity of HFC-125. This is a method of producing HFC-125 in which the content of CFC-115 is lowered to not more than 15 vol % of the total amount of HFC-125 and CFC-115, and then CFC-115 is made to react with hydrogen in the presence of a catalyst.
    Type: Grant
    Filed: September 5, 1995
    Date of Patent: May 12, 1998
    Assignee: Daikin Industries Ltd.
    Inventors: Takashi Shibanuma, Yukio Homoto, Satoshi Komatsu, Toshikazu Yoshimura
  • Patent number: 5475166
    Abstract: In a process for preparing 1,1,1-trifluorochloroethane by reacting, in a gas phase, trichloroethylene and hydrogen fluoride, when the reactant gases are diluted with a gas which is inactive to the reaction, it is very easy to control a reaction temperature, and when a generated gas from the reaction of 1,1,1-trifluorochloroethane and hydrogen fluoride is used as a diluent gas, generation of 1,1-difluoroethylene is suppressed to a very low level while not influencing the reaction between trichloroethylene and hydrogen fluoride.
    Type: Grant
    Filed: July 29, 1994
    Date of Patent: December 12, 1995
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoshi Koyama, Yukio Homoto, Naoki Esaka
  • Patent number: 5395998
    Abstract: In a process for preparing 1,1,1-trifluorochloroethane by reacting, in a gas phase, trichloroethylene and hydrogen fluoride, when the reactant gases are diluted with a gas which is inactive to the reaction, it is very easy to control a reaction temperature, and when a generated gas from the reaction of 1,1,1-trifluorochloroethane and hydrogen fluoride is used as a diluent gas, generation of 1,1-difluoroethylene is suppressed to a very low level while not influencing the reaction between trichloroethylene and hydrogen fluoride.
    Type: Grant
    Filed: January 28, 1994
    Date of Patent: March 7, 1995
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoshi Koyama, Yukio Homoto, Naoki Esaka
  • Patent number: 5334786
    Abstract: In a process for preparing 1,1,1-trifluorochloroethane by reacting, in a gas phase, trichloroethylene and hydrogen fluoride, when the reactant gases are diluted with a gas which is inactive to the reaction, it is very easy to control a reaction temperature, and when a generated gas from the reaction of 1,1,1-trifluorochloroethane and hydrogen fluoride is used as a diluent gas, generation of 1,1-difluoroethylene is suppressed to a very low level while not influencing the reaction between trichloroethylene and hydrogen fluoride.
    Type: Grant
    Filed: January 27, 1993
    Date of Patent: August 2, 1994
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoshi Koyama, Yukio Homoto, Naoki Esaka