Patents by Inventor Yun-Sik Han

Yun-Sik Han has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6920018
    Abstract: Improved head gimbal assemblies reducing TMR (Track Mis-Registration) in a hard disk drive are provided. These head gimbal assemblies are as mechanically simple as contemporary head gimbal assemblies, support parallel flying sliders over flat disk surfaces, and reduce TMR' induced by disk vibration. They are easier to build, more reliable, and cost less to make, than other known approaches at comparable track densities and rotational rates. The improved head gimbal assemblies include three sets of mechanisms moving the slider parallel the disk surface, when the disk surface is flat, and radially moving the slider toward the track, when the disk surface is bent. The first and third mechanisms as well as the second and third mechanisms can be used together in a head gimbal assembly. An improved and distinctive servo-controller scheme resulting in an overall improvement in PES performance, particularly when applied to hard disk drives employing the invention's TMR reduction mechanisms.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: July 19, 2005
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Yun-Sik Han, Young-Hoon Kim, Myeong-Eop Kim, Tae-Yeon Hwang, Jae-Won Kim
  • Publication number: 20050128628
    Abstract: A servo writer that writes servo information onto a disk of a hard disk drive. The servo writer can write servo information onto a disk of a hard disk drive while the disk is within an inner chamber of a housing. The rotating disk creates a flow of fluid within the inner chamber. The disk is rotated during the servo writing process. The density of a fluid medium within the inner chamber is controlled by a medium control system so that the density of the medium is less than the density of air at one atmosphere. Lowering the density decreases the amplitude of vibrational forces created by the flow of fluid. Decreasing the amplitude reduces errors in the servo writing process. The density can be reduced by pulling a vacuum within the inner chamber. The density can also be reduced by filling the inner chamber with a gas such as helium that has a lower density than air.
    Type: Application
    Filed: December 10, 2003
    Publication date: June 16, 2005
    Inventors: Yun-Sik Han, Seong-Woo Kang, Tho Pham, Young-Hoon Kim, Edward Aguilar, Dong-Ho Oh, Myeong-Eop Kim
  • Publication number: 20050007702
    Abstract: Improved head gimbal assemblies reducing TMR (Track Mis-Registration) in a hard disk drive are provided. These head gimbal assemblies are as mechanically simple as contemporary head gimbal assemblies, support parallel flying sliders over flat disk surfaces, and reduce TMR induced by disk vibration. They are easier to build, more reliable, and cost less to make, than other known approaches at comparable track densities and rotational rates. The improved head gimbal assemblies include three sets of mechanisms for moving the slider parallel the disk surface, when the disk surface is flat, and radially moving the slider toward the track, when the disk surface is bent. The first and third mechanisms as well as the second and third mechanisms can be used together in a head gimbal assembly. An improved and distinctive servo-controller scheme resulting in an overall improvement in PES performance, particularly when applied to hard disk drives employing the invention's TMR reduction mechanisms.
    Type: Application
    Filed: July 10, 2003
    Publication date: January 13, 2005
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Yun-Sik Han, Young-Hoon Kim, Myeong-Eop Kim, Tae-Yeon Hwang, Jae-Won Kim
  • Publication number: 20050007689
    Abstract: An improved and distinctive servo-controller scheme resulting in an overall improvement in PES performance, particularly when applied to hard disk drives employing the invention's TMR reduction mechanisms. The servo-controllers trade off gain in the disk vibration frequency range, in favor of, increased rejection of low frequency disturbances. This leads to the lowest PES statistics, when applied to hard disk drives with the TMR reduction mechanisms of the invention. Improved head gimbal assemblies reducing TMR (Track Mis-Registration) in a hard disk drive are provided. These head gimbal assemblies are as mechanically simple as contemporary head gimbal assemblies, support parallel flying sliders over flat disk surfaces, and reduce TMR induced by disk vibration. They are easier to build, more reliable, and cost less to make, than other known approaches at comparable track densities and rotational rates.
    Type: Application
    Filed: July 10, 2003
    Publication date: January 13, 2005
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Yun-Sik Han, Young-Hoon Kim, Myeong-Eop Kim, Tae-Yeon Hwang, Jae-Won Kim
  • Publication number: 20050007701
    Abstract: Improved head gimbal assemblies reducing TMR (Track Mis-Registration) in a hard disk drive are provided. These head gimbal assemblies are as mechanically simple as contemporary head gimbal assemblies, support parallel flying sliders over flat disk surfaces, and reduce TMR induced by disk vibration. They are easier to build, more reliable, and cost less to make, than other known approaches at comparable track densities and rotational rates. The improved head gimbal assemblies include three sets of mechanisms moving the slider parallel the disk surface, when the disk surface is flat, and radially moving the slider toward the track, when the disk surface is bent. The first and third mechanisms as well as the second and third mechanisms can be used together in a head gimbal assembly. An improved and distinctive servo-controller scheme resulting in an overall improvement in PES performance, particularly when applied to hard disk drives employing the invention's TMR reduction mechanisms.
    Type: Application
    Filed: July 10, 2003
    Publication date: January 13, 2005
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Yun-Sik Han, Young-Hoon Kim, Myeong-Eop Kim, Tae-Yeon Hwang, Jae-Won Kim
  • Publication number: 20030214746
    Abstract: A hard disk drive that has a locking actuator which can engage and lock a disk and spindle motor of the drive. The locking actuator may have a shape memory alloy element that causes a plunger to engage and lock a disk(s) when power is terminated to the drive. In the locked position the actuator can minimize the impact of shock and vibration loads on the spindle motor, particularly when the hard disk drive is shipped and transported. The shape memory alloy element is heated when the hard disk drive receives power. The heated shape memory alloy element disengages the plunger from the disk and allows for operation of the disk drive.
    Type: Application
    Filed: May 14, 2002
    Publication date: November 20, 2003
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Yun-Sik Han, Tae-Yeon Hwang, Myeong-Eop Kim
  • Patent number: 6501614
    Abstract: A hard disk drive which has a housing that can attenuate noise. The housing may include a first layer that is attached to a second layer and a third layer located between the first and second layers. The layers may be designed to create a transfer function that attenuates, or rolls off, acoustic noise within a range of frequencies.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: December 31, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-Woo Kang, Tai-Yeon Hwang, Yun-Sik Han, Wilson Long
  • Publication number: 20020034033
    Abstract: An actuator that can vary the gram load of a suspension arm of a hard disk drive. The actuator may be a shape memory alloy, piezoelectric transducer, or other means for deflecting and changing the gram load of a suspension arm of an actuator arm assembly. When the disk drive is not operating the gram load may be set to a high value that will prevent head slapping. The gram load of the suspension arm may be varied by the actuator to reduce the gram load when the disk drive is operating.
    Type: Application
    Filed: May 1, 2001
    Publication date: March 21, 2002
    Inventors: Seong-Woo Kang, Dong-Ho Oh, Tae-Yeon Hwang, Yun-Sik Han, Young Son