Patents by Inventor Yuncai Wang

Yuncai Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11927491
    Abstract: A self-calibration detection device and a temperature demodulation method oriented to a fiber Raman temperature sensing system. The self-calibration detection device comprises a fiber Raman thermodetector, thermostatic baths, a multi-mode sensing fiber, and a multi-mode reflector. The fiber Raman thermodetector comprises a pulsed laser whose output end is connected to the input end of a WDM. Two output ends of the WDM are respectively connected to input ends of a first and second APDs. Output ends of the first and second APDs are respectively connected to input ends of a first and second LNAs. Output ends of the first and second LNAs are connected to the input end of a data acquisition card whose output end is connected with the input end of a computer. The temperature demodulation method can solve the problems of low temperature measuring accuracy, lower temperature measurement stability and low temperature measurement efficiency.
    Type: Grant
    Filed: May 5, 2019
    Date of Patent: March 12, 2024
    Assignee: TAIYUAN UNIVERSITY OF TECHNOLOGY
    Inventors: Mingjiang Zhang, Jian Li, Jianzhong Zhang, Lijun Qiao, Baoqiang Yan, Yang Xu, Baoquan Jin, Dong Wang, Yu Wang, Yuncai Wang
  • Patent number: 11914068
    Abstract: The present disclosure relates to a radar ranging system based on a true random generator and a ranging method thereof The present disclosure adopts the following technical scheme: the system comprises a radar signal modulation and transmission unit and a radar signal receiving and processing unit, wherein the radar signal modulation and transmission unit inputs and stores a true random binary sequence generated by the true random generator in a memory, and cyclically outputs the true random binary sequence to a BPSK modulator for phase modulation. The receiving and amplifying unit receives the reflected radar signal. The down-sampling unit down samples the intermediate frequency signal generated by the mixers. The data processing unit converts the sampled analog signal into a digital signal and cross-correlates the signal with the true random binary sequence in the memory, so as to obtain the distance to the object side to be measured.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: February 27, 2024
    Assignee: Taiyuan University of Technology
    Inventors: Jianguo Zhang, Rui Hou, Hang Xu, Li Liu, Zhiwei Jia, Yuncai Wang
  • Patent number: 11808639
    Abstract: A temperature demodulation method oriented toward a distributed fiber Raman temperature sensing system, the method comprising the following steps: step 1 of constructing a high-precision temperature detection device oriented towards a distributed fiber Raman sensing system; step 2 of performing signal processing with respect to Stokes light and anti-Stokes light at a calibration stage; step 3 of performing signal processing with respect to Stokes light and the anti-Stokes light at a measurement stage; and step 4 of obtaining a high-precision temperature demodulation technique oriented toward the distributed fiber Raman sensor. The method is used to effectively resolve the issue of low temperature measuring accuracy caused by Rayleigh crosstalk in existing distributed fiber Raman temperature measurement systems, and temperature measurement accuracy thereof is expected to fall within ±0.1° C. The method is applicable to distributed fiber Raman temperature measurement systems.
    Type: Grant
    Filed: May 5, 2019
    Date of Patent: November 7, 2023
    Assignee: TAIYUAN UNIVERSITY OF TECHNOLOGY
    Inventors: Mingjiang Zhang, Jian Li, Jianzhong Zhang, Lijun Qiao, Tao Wang, Yuncai Wang, Baoquan Jin, Yu Wang, Dong Wang
  • Patent number: 11811457
    Abstract: A method for generating millimeter wave noise with a flat RF (radio frequency) spectrum includes the following steps. A noise optical signal with an optical spectrum in Gaussian shape is output by a first optical emission module. The noise optical signal is transmitted to an optical coupler. n beams of noise optical signals with optical spectra in Gaussian shape is output by a second optical emission module. The noise optical signals is transmitted to the optical coupler. The noise light generated by the first optical emission module and the second optical emission module is coupled to the optical coupler. The coupled optical signals is transmitted to a photodetector. The beat frequency is performed by the photodetector to realize mapping transformation from the optical spectra to the RF spectra. The flat millimeter wave noise is output.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: November 7, 2023
    Assignee: GUANGDONG UNIVERSITY OF TECHNOLOGY
    Inventors: Yuncai Wang, Yimin Huang, Yuehui Sun, Wenjie Liu, Zhensen Gao, Yu Cheng
  • Publication number: 20230261753
    Abstract: A method for generating millimeter wave noise with a flat RF (radio frequency) spectrum includes the following steps. A noise optical signal with an optical spectrum in Gaussian shape is output by a first optical emission module. The noise optical signal is transmitted to an optical coupler. n beams of noise optical signals with optical spectra in Gaussian shape is output by a second optical emission module. The noise optical signals is transmitted to the optical coupler. The noise light generated by the first optical emission module and the second optical emission module is coupled to the optical coupler. The coupled optical signals is transmitted to a photodetector. The beat frequency is performed by the photodetector to realize mapping transformation from the optical spectra to the RF spectra. The flat millimeter wave noise is output.
    Type: Application
    Filed: July 21, 2021
    Publication date: August 17, 2023
    Applicant: GUANGDONG UNIVERSITY OF TECHNOLOGY
    Inventors: Yuncai WANG, Yimin HUANG, Yuehui SUN, Wenjie LIU, Zhensen GAO, Yu CHENG
  • Patent number: 11489681
    Abstract: A physically unclonable function (PUF) device includes a hybrid Boolean network module of a ring of N number of Boolean nodes connected end to end and a sampling module, wherein the hybrid Boolean network module comprises N number of xor logic gates and corresponding N number of multiplexers, wherein a function change module is disposed between an output end of a first xor logic gate of the N number of xor logic gates and an input end of a first multiplexer of the N number of multiplexers, wherein each Boolean node is provided with four input ends and three output ends, the four input ends respectively connected to an output end of each of two juxtaposing Boolean nodes, an initial excitation signal and a control delay signal, the three output ends respectively output to an input of each of two juxtaposing Boolean nodes, and the sampling module.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: November 1, 2022
    Assignee: Taiyuan University of Technology
    Inventors: Jianguo Zhang, Xin Wang, Guodong Zhang, Yuncai Wang, Pu Li, Xianglian Liu
  • Patent number: 11474412
    Abstract: Disclosed by the present invention is an ultra-wideband white noise source based on a slicing super-continuum spectrum. The entropy source used is a super-continuum spectrum photon entropy source having a coverage range of several hundreds of nm, white noise can thus be generated in a wide frequency range, thereby effectively avoiding the bandwidth bottleneck of an electronic device. By separately adjusting the filter centers of two optical filters, the center frequency for generating the white noise can be adjusted so as to get adapted to different working situations. High bandwidth white noise can be generated by simply filtering the super-continuum spectrum and performing photoelectric conversion, and in comparison with the previous solutions, the solution of the present invention is simpler and can be easily implemented.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: October 18, 2022
    Assignee: TAIYUAN UNIVERSITY OF TECHNOLOGY
    Inventors: Pu Li, Yuncai Wang, Qiang Cai, Zhiwei Jia, Jianguo Zhang, Anbang Wang, Mingjiang Zhang
  • Publication number: 20220283267
    Abstract: The present disclosure relates to a radar ranging system based on a true random generator and a ranging method thereof. The present disclosure adopts the following technical scheme: the system comprises a radar signal modulation and transmission unit and a radar signal receiving and processing unit, wherein the radar signal modulation and transmission unit inputs and stores a true random binary sequence generated by the true random generator in a memory, and cyclically outputs the true random binary sequence to a BPSK modulator for phase modulation. The receiving and amplifying unit receives the reflected radar signal. The down-sampling unit down samples the intermediate frequency signal generated by the mixers. The data processing unit converts the sampled analog signal into a digital signal and cross-correlates the signal with the true random binary sequence in the memory, so as to obtain the distance to the object side to be measured.
    Type: Application
    Filed: September 10, 2021
    Publication date: September 8, 2022
    Applicant: Taiyuan University of Technology
    Inventors: Jianguo ZHANG, Rui HOU, Hang XU, Li LIU, Zhiwei JIA, Yuncai WANG
  • Publication number: 20220171255
    Abstract: Disclosed by the present invention is an ultra-wideband white noise source based on a slicing super-continuum spectrum. The entropy source used is a super-continuum spectrum photon entropy source having a coverage range of several hundreds of nm, white noise can thus be generated in a wide frequency range, thereby effectively avoiding the bandwidth bottleneck of an electronic device. By separately adjusting the filter centers of two optical filters, the center frequency for generating the white noise can be adjusted so as to get adapted to different working situations. High bandwidth white noise can be generated by simply filtering the super-continuum spectrum and performing photoelectric conversion, and in comparison with the previous solutions, the solution of the present invention is simpler and can be easily implemented.
    Type: Application
    Filed: April 24, 2020
    Publication date: June 2, 2022
    Inventors: Pu LI, Yuncai WANG, Qiang CAI, Zhiwei JIA, Jianguo ZHANG, Anbang WANG, Mingjiang ZHANG
  • Publication number: 20220094561
    Abstract: A physically unclonable function (PUF) device includes a hybrid Boolean network module of a ring of N number of Boolean nodes connected end to end and a sampling module, wherein the hybrid Boolean network module comprises N number of xor logic gates and corresponding N number of multiplexers, wherein a function change module is disposed between an output end of a first xor logic gate of the N number of xor logic gates and an input end of a first multiplexer of the N number of multiplexers, wherein each Boolean node is provided with four input ends and three output ends, the four input ends respectively connected to an output end of each of two juxtaposing Boolean nodes, an initial excitation signal and a control delay signal, the three output ends respectively output to an input of each of two juxtaposing Boolean nodes, and the sampling module.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 24, 2022
    Inventors: Jianguo Zhang, Xin Wang, Guodong Zhang, Yuncai Wang, Pu Li, Xianglian Liu
  • Patent number: 11216252
    Abstract: The present disclosure provides a high-speed random number generation method and device, comprising an entropy source module and an entropy sampling module. The entropy source module is an autonomous Boolean network formed by digital logic gates, the network is formed by an XNOR gate and (N?1) XOR gates, wherein the value of N is equal to 3n (n is a positive integer), and the entropy source can generate chaotic signals having wide and flat frequency spectrum. The entropy sampling module of the present disclosure is formed by D flip flops used for sampling and quantizing the chaotic signals to generate random number sequences. The random number sequences generated by the present disclosure can pass test standards (NIST and Diehard statistic tests) of random number industry and have excellent random statistic characteristics.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: January 4, 2022
    Assignee: Taiyuan University of Technology
    Inventors: Jianguo Zhang, Qiqi Zhang, Yuncai Wang, Anbang Wang, Pu Li
  • Publication number: 20210334073
    Abstract: The present disclosure provides a high-speed random number generation method and device, comprising an entropy source module and an entropy sampling module. The entropy source module is an autonomous Boolean network formed by digital logic gates, the network is formed by an XNOR gate and (N?1) XOR gates, wherein the value of N is equal to 3n (n is a positive integer), and the entropy source can generate chaotic signals having wide and flat frequency spectrum. The entropy sampling module of the present disclosure is formed by D flip flops used for sampling and quantizing the chaotic signals to generate random number sequences. The random number sequences generated by the present disclosure can pass test standards (NIST and Diehard statistic tests) of random number industry and have excellent random statistic characteristics.
    Type: Application
    Filed: November 26, 2018
    Publication date: October 28, 2021
    Applicant: Taiyuan University of Technology
    Inventors: Yuncai WANG, Qiqi ZHANG, Jianguo ZHANG, Anbang WANG, Pu LI
  • Patent number: 11152763
    Abstract: An InP-based monolithic integrated chaotic semiconductor laser chip capable of feeding back randomly diffused light, being composed of six regions: a left DFB semiconductor laser, a bidirectional SOA, a left passive optical waveguide region, a doped passive optical waveguide region, a right passive optical waveguide region, and a right DFB semiconductor laser, specifically including: an N+ electrode layer, an N-type substrate, an InGaAsP lower confinement layer, an undoped InGaAsP multiple quantum well active region layer, doped particles, distributed feedback Bragg gratings, an InGaAsP upper confinement layer, a P-type heavily doped InP cover layer, a P-type heavily doped InGaAs contact layer, a P+ electrode layer, a light-emitting region, and isolation grooves. It effectively solves problems of bulky volume of the existing chaotic laser source, the time-delay signature of chaotic laser, narrow bandwidth, and low coupling efficiency of the light and the optical waveguide.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: October 19, 2021
    Inventors: Mingjiang Zhang, Jianzhong Zhang, Ya'nan Niu, Yi Liu, Tong Zhao, Lijun Qiao, Anbang Wang, Yuncai Wang
  • Publication number: 20210270682
    Abstract: A temperature demodulation method oriented toward a distributed fiber Raman temperature sensing system, the method comprising the following steps: step 1 of constructing a high-precision temperature detection device oriented towards a distributed fiber Raman sensing system; step 2 of performing signal processing with respect to Stokes light and anti-Stokes light at a calibration stage; step 3 of performing signal processing with respect to Stokes light and the anti-Stokes light at a measurement stage; and step 4 of obtaining a high-precision temperature demodulation technique oriented toward the distributed fiber Raman sensor. The method is used to effectively resolve the issue of low temperature measuring accuracy caused by Rayleigh crosstalk in existing distributed fiber Raman temperature measurement systems, and temperature measurement accuracy thereof is expected to fall within ±0.1° C. The method is applicable to distributed fiber Raman temperature measurement systems.
    Type: Application
    Filed: May 5, 2019
    Publication date: September 2, 2021
    Inventors: Mingjiang Zhang, Jian Li, Jianzhong Zhang, Lijun Qiao, Tao Wang, Yuncai Wang, Baoquan Jin, Yu Wang, Dong Wang
  • Patent number: 11081860
    Abstract: The present invention discloses an integrated broadband chaotic semiconductor laser using optical microcavities. The arc-shaped hexagonal laser outputs light. Part of the light is totally reflected through the deformed microcavity and then reflected out of the deformed microcavity from the passive waveguide II; after entering the passive feedback waveguide, another part of the light is fed back into the deformed microcavity by the high reflection film, passes through an in-cavity ray track and then is also reflected out of the deformed microcavity from the passive waveguide II; the two-path light is coupled into the arc-shaped hexagonal laser, and finally generated chaotic laser light is directionally coupled and output through the passive waveguide I at the other end of the arc-shaped hexagonal laser. The present invention has wide broadband, flat spectrum, compact structure, and no time delay signature.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: August 3, 2021
    Assignee: TAIYUAN UNIVERSITY OF TECHNOLOGY
    Inventors: Anbang Wang, Yixuan Wang, Yuncai Wang, Yuanyuan Guo, Longsheng Wang, Tong Zhao
  • Patent number: 11050485
    Abstract: The present invention discloses a high-precision and large-dynamic-range fault monitoring device and method for a WDM-PON. The monitoring device includes a WDM-PON optical network system and an optical network monitoring system. The optical network system includes an OLT I, a feeder fiber II, a 1×n AWG III, a branch fiber IV, and an optical network unit V The optical network monitoring system includes an FP laser, a coupler, an optical coupling device, a photodetector, a signal acquisition and processing device, and an optical feedback device, where the FP laser is connected to the coupler; a large-coupling-ratio output end of the coupler is connected to an input end of the optical coupling device, and a small-coupling-ratio output end of the coupler is connected to an input end of the photodetector; the optical coupling device is installed on the feeder fiber II.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: June 29, 2021
    Inventors: Yuncai Wang, Anbang Wang, Tong Zhao, Bingjie Wang, Peixin He
  • Publication number: 20210116311
    Abstract: A self-calibration detection device and a temperature demodulation method oriented to a fiber Raman temperature sensing system. The self-calibration detection device comprises a fiber Raman thermodetector, thermostatic baths, a multi-mode sensing fiber, and a multi-mode reflector. The fiber Raman thermodetector comprises a pulsed laser whose output end is connected to the input end of a WDM. Two output ends of the WDM are respectively connected to input ends of a first and second APDs. Output ends of the first and second APDs are respectively connected to input ends of a first and second LNAs. Output ends of the first and second LNAs are connected to the input end of a data acquisition card whose output end is connected with the input end of a computer. The temperature demodulation method can solve the problems of low temperature measuring accuracy, lower temperature measurement stability and low temperature measurement efficiency.
    Type: Application
    Filed: May 5, 2019
    Publication date: April 22, 2021
    Inventors: Mingjiang Zhang, Jian Li, Jianzhong Zhang, Lijun Qiao, Baoqiang Yan, Yang Xu, Baoquan Jin, Dong Wang, Yu Wang, Yuncai Wang
  • Patent number: 10944498
    Abstract: The present invention discloses a device and a method for monitoring two-stage faults of a TDM-PON with high precision. A two-stage TDM-PON system includes an OLT I, a feeder fiber II, a stage-1 1:n optical splitter III, a stage-1 branch fiber IV, a stage-2 1:n optical splitter V, a stage-2 branch fiber VI, and an optical network unit (ONU) VII. A two-stage optical network monitoring system includes a monitoring part on the OLT I side and a monitoring part on the ONU VII side, where the monitoring part on the OLT I side includes a control-end isolator-free semiconductor laser, a control-end coupler, a control-end optical coupling device, a control-end photodetector, an integrated signal acquisition and processing device, and an optical coupling device; and the monitoring part on the ONU VII side is similar to the monitoring part of the OLT I side.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: March 9, 2021
    Assignee: Taiyuan University of Technology
    Inventors: Anbang Wang, Tong Zhao, Yuncai Wang, Bingjie Wang, Peixin He
  • Patent number: 10923881
    Abstract: A monolithic integrated semiconductor random laser comprising substrate, lower confinement layer on the substrate, active layer on the lower confinement layer, upper confinement layer on the active layer, strip-shaped waveguide layer longitudinally made in middle of the upper confinement layer, P+ electrode layer divided into two segments and made on the waveguide layer and N+ electrode layer on a back face of the lower confinement layer, wherein the two segments correspond respectively to gain region and random feedback region. The random feedback region uses a doped waveguide to randomly feedback light emitted by the gain region and then generates random laser which is random in frequency and intensity. Further, the semiconductor laser is light, small, stable in performance and strong in integration.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: February 16, 2021
    Inventors: Mingjiang Zhang, Jianzhong Zhang, Tianshuang Lv, Lijun Qiao, Yi Liu, Tong Zhao, Anbang Wang, Yuncai Wang
  • Publication number: 20200412092
    Abstract: An InP-based monolithic integrated chaotic semiconductor laser chip capable of feeding back randomly diffused light, being composed of six regions: a left DFB semiconductor laser, a bidirectional SOA, a left passive optical waveguide region, a doped passive optical waveguide region, a right passive optical waveguide region, and a right DFB semiconductor laser, specifically including: an N+ electrode layer, an N-type substrate, an InGaAsP lower confinement layer, an undoped InGaAsP multiple quantum well active region layer, doped particles, distributed feedback Bragg gratings, an InGaAsP upper confinement layer, a P-type heavily doped InP cover layer, a P-type heavily doped InGaAs contact layer, a P+ electrode layer, a light-emitting region, and isolation grooves. It effectively solves problems of bulky volume of the existing chaotic laser source, the time-delay signature of chaotic laser, narrow bandwidth, and low coupling efficiency of the light and the optical waveguide.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 31, 2020
    Applicant: Taiyuan University Of Technology
    Inventors: Mingjiang Zhang, Jianzhong Zhang, Ya'nan Niu, Yi Liu, Tong Zhao, Lijun Qiao, Anbang Wang, Yuncai Wang