Patents by Inventor Yunchun Li

Yunchun Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220195563
    Abstract: A die-cast aluminum alloy and a preparation method and use thereof are disclosed. Based on the total mass of the die-cast aluminum alloy, the die-cast aluminum alloy includes: 4-9 wt % of Mg; 1.6-2.8 wt % of Si; 1.1-2 wt % of Zn; wt % of Mn; 0.1-0.3 wt % of Ti; 0.009-0.05 wt % of Be; the balance of Al; and less than 0.2 wt % of inevitable impurities.
    Type: Application
    Filed: March 26, 2020
    Publication date: June 23, 2022
    Inventors: Yunchun LI, Qiang GUO, Youping REN, Yongliang XIE
  • Publication number: 20210207249
    Abstract: A die-cast aluminum alloy and a preparation method and application thereof are disclosed. Based on the total weight of the aluminum alloy, the aluminum alloy includes: 8-11 wt % of Si, 2.5-5 wt % of Cu, 0.5-1.5 wt % of Mg, 0.1-0.3 wt % of Ni, 0.6-1.2 wt % of Fe, 0.1-0.3 wt % of Cr, 0.03-0.05 wt % of Sr, 0-0.3 wt % of Er, 80.25-88.1 wt % of Al, and 0.1 wt % or below of impurities.
    Type: Application
    Filed: May 29, 2019
    Publication date: July 8, 2021
    Inventors: Qiang GUO, Yongliang XIE, Yunchun LI, Mengjue LIAO
  • Publication number: 20210108290
    Abstract: The present disclosure discloses a heat-conductive aluminum alloy and application thereof. The heat-conductive aluminum alloy contains alloying elements, unavoidable impurities and the balance of an aluminum element. Based on the total weight of the heat-conductive aluminum alloy, the alloying elements include: 5.0 to 11.0% by weight of Si, 0.4 to 1.0% by weight of Fe, 0.2 to 1.0% by weight of Mg, less than 0.1% by weight of Zn, less than 0.1% by weight of Mn, less than 0.1% by weight of Sr and less than 0.1% by weight of Cu. The heat-conductive aluminum alloy prepared by the present disclosure has a tensile strength of not less than 250 MPa, a yield strength of not less than 150 MPa, an elongation of not less than 3.5%, and a thermal conductivity of not less than 150 W/(m·K).
    Type: Application
    Filed: October 25, 2017
    Publication date: April 15, 2021
    Inventors: Qiang GUO, Yunchun LI, Chunmeng ZHANG, Yongliang XIE
  • Patent number: 9616495
    Abstract: An amorphous and a manufacturing method thereof are provided. The amorphous alloy may have a formula of ZraCubAlcMdNe, M is at least one selected from the group consisting of Ni, Fe, Co, Mn, Cr, Ti, Hf, Ta, Nb and rare earth elements; N is at least one selected from a group consisting of Ca, Mg, and C; 40?a?70, 15?b?35, 5?c?15, 5?d?15, 0?e?2, and a+b+c+d+e=100.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: April 11, 2017
    Assignee: SHENZHEN BYD AUTO R&D COMPANY LIMITED
    Inventors: Qing Gong, Faliang Zhang, Yunchun Li
  • Publication number: 20160008879
    Abstract: A method of joining an amorphous alloy material to a heterogeneous material and a composite formed by the same are provided. The method comprises steps of: placing a pre-formed piece made of one of the amorphous alloy material and the heterogeneous material into a mold; heating the other of the amorphous alloy material and the heterogeneous material to a predetermined temperature, and casting the other of the amorphous alloy material and the heterogeneous material into the mold to form a transition connection part joining the amorphous alloy material to the heterogeneous material and having a fusion welded structure, a microstructure reinforcing connection structure and a composite connection structure; and cooling the amorphous alloy material and the heterogeneous material at a rate higher than a critical cooling rate of the amorphous alloy material to obtain a composite formed by joining the amorphous alloy material to the heterogeneous material by the transition connection part.
    Type: Application
    Filed: September 22, 2015
    Publication date: January 14, 2016
    Applicants: Shenzhen BYD Auto R&D Company Limited, BYD Company Limited
    Inventors: Qing GONG, Faliang ZHANG, Yunchun LI
  • Patent number: 9174415
    Abstract: A method of joining an amorphous alloy material to a heterogeneous material and a composite formed by the same are provided. The method comprises steps of: placing a pre-formed piece made of one of the amorphous alloy material and the heterogeneous material into a mold; heating the other of the amorphous alloy material and the heterogeneous material to a predetermined temperature, and casting the other of the amorphous alloy material and the heterogeneous material into the mold to form a transition connection part joining the amorphous alloy material to the heterogeneous material and having a fusion welded structure, a microstructure reinforcing connection structure and a composite connection structure; and cooling the amorphous alloy material and the heterogeneous material at a rate higher than a critical cooling rate of the amorphous alloy material to obtain a composite formed by joining the amorphous alloy material to the heterogeneous material by the transition connection part.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: November 3, 2015
    Assignees: Shenzhen BYD Auto R&D Company Limited, BYD Company Limited
    Inventors: Qing Gong, Faliang Zhang, Yunchun Li
  • Publication number: 20140305549
    Abstract: An amorphous and a manufacturing method thereof are provided. The amorphous alloy may have a formula of ZraCubAlcMdNe, M is at least one selected from the group consisting of Ni, Fe, Co, Mn, Cr, Ti, Hf, Ta, Nb and rare earth elements; N is at least one selected from a group consisting of Ca, Mg, and C; 40?a?70, 15?b?35, 5?c?15, 5?d?15, 0?e?2, and a+b+c+d+e=100.
    Type: Application
    Filed: December 14, 2012
    Publication date: October 16, 2014
    Inventors: Qing Gong, Faliang Zhang, Yunchun Li
  • Publication number: 20140199560
    Abstract: A method of joining an amorphous alloy material to a heterogeneous material and a composite formed by the same are provided. The method comprises steps of: placing a pre-formed piece made of one of the amorphous alloy material and the heterogeneous material into a mold; heating the other of the amorphous alloy material and the heterogeneous material to a predetermined temperature, and casting the other of the amorphous alloy material and the heterogeneous material into the mold to form a transition connection part joining the amorphous alloy material to the heterogeneous material and having a fusion welded structure, a microstructure reinforcing connection structure and a composite connection structure; and cooling the amorphous alloy material and the heterogeneous material at a rate higher than a critical cooling rate of the amorphous alloy material to obtain a composite formed by joining the amorphous alloy material to the heterogeneous material by the transition connection part.
    Type: Application
    Filed: August 15, 2012
    Publication date: July 17, 2014
    Applicant: Shenzhen BYD Auto R & D Company Limited
    Inventors: Qing Gong, Faliang Zhang, Yunchun Li
  • Patent number: 8603266
    Abstract: Alloys and methods of preparing the same are provided. The alloys are represented by the general formula of (ZraMbNc)100-xQx, in which M is at least one transition metal except Zr; N is Be or Al; Q is selected from the group consisting of CaO, MgO, Y2O3, Nd2O3, and combinations thereof; a, b, and c are atomic percents of corresponding elements; and 45?a?75, 20?b?40, 1?c?25, a+b+c=100, and 1?x?15. A method of recycling a Zr-based amorphous alloy waste is also provided.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: December 10, 2013
    Assignee: BYD Company Limited
    Inventors: Qing Gong, Yunchun Li, Yongxi Jian, Faliang Zhang
  • Patent number: 8333850
    Abstract: A Zr-based amorphous alloy and a method of preparing the same are provided. The Zr-based amorphous alloy is represented by the general formula of (ZraM1-a)100-xOx, in which a is an atomic fraction of Zr, and x is an atomic percent of 0, in which: 0.3?a?0.9, and 0.02?x?0.6; and M represents at least three elements selected from the group consisting of transition metals other than Zr, Group IIA metals, and Group IIIA metals.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: December 18, 2012
    Assignee: BYD Company Limited
    Inventors: Qing Gong, Faliang Zhang, Yunchun Li, Jiangtao Qu, Xiaolei Hu
  • Publication number: 20120222785
    Abstract: A heat treatment process for an amorphous alloy die cast comprises: the amorphous alloy die cast is subjected to an aging treatment at a temperature of about 0.5-0.6 Tg, for a time of about 10 minutes to about 24 hours. The amorphous alloy die cast comprises Zr, and is represented by a formula of (Zr1?xTix)a(Cu1?yNiy)bAlcMd, in which M is selected from the group consisting of: Be, Y, Sc, La, and combinations thereof, 38?a?65, 0?x?0.45, 0?y?0.75, 20?b?40, 0?c?15, 0?d?30, and the sum of a, b, c, and d in atomic percentages equals to 100.
    Type: Application
    Filed: March 27, 2012
    Publication date: September 6, 2012
    Inventors: Yunchun LI, Faliang Zhang
  • Publication number: 20120073707
    Abstract: A Zr-based amorphous alloy and a method of preparing the same are provided. The Zr-based amorphous alloy is represented by the general formula of (ZraM1-a)100-xOx, in which a is an atomic fraction of Zr, and x is an atomic percent of 0, in which: 0.3?a?0.9, and 0.02?x?0.6; and M represents at least three elements selected from the group consisting of transition metals other than Zr, Group IIA metals, and Group IIIA metals.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 29, 2012
    Inventors: Qing Gong, Faliang Zhang, Yunchun Li, Jiangtao Qu, Xiaolei Hu
  • Publication number: 20110308671
    Abstract: A Zr-based amorphous alloy and a method of preparing the same are provided. The Zr-based amorphous alloy is represented by the general formula of (ZraM1-a)100-xOx, in which a is an atomic fraction of Zr, and x is an atomic percent of O, in which: 0.3?a?0.9, and 0.02?x?0.6, and M may represent at least three elements selected from the group consisting of transition metals other than Zr, Group IIA metals, and Group IIIA metals in the Periodic Table of Elements.
    Type: Application
    Filed: October 22, 2010
    Publication date: December 22, 2011
    Applicant: BYD COMPANY LIMITED
    Inventors: Qing Gong, Fallang Zhang, Yunchun Li, Jiangtao Qu, Xiaolei Hu
  • Publication number: 20110280761
    Abstract: Alloys and methods of preparing the same are provided. The alloys are represented by the general formula of (ZraMbNc)100-xQx, in which M is at least one transition metal except Zr; N is Be or Al; Q is selected from the group consisting of CaO, MgO, Y2O3, Nd2O3, and combinations thereof; a, b, and c are atomic percents of corresponding elements; and 45?a?75, 20?b?40, 1?c?25, a+b+c=100, and 1?x?15. A method of recycling a Zr-based amorphous alloy waste is also provided.
    Type: Application
    Filed: November 8, 2010
    Publication date: November 17, 2011
    Inventors: Qing Gong, Yunchun Li, Yongxi Jian, Faliang Zhang