Patents by Inventor Yunfeng Lu

Yunfeng Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8044292
    Abstract: A thermoelectric material comprises core-shell particles having a core formed from a core material and a shell formed from a shell material. In representative examples, the shell material is a material showing an appreciable thermoelectric effect in bulk. The core material preferably has a lower thermal conductivity than the shell material. In representative examples, the core material is an inorganic oxide such as silica or alumina, and the shell material is a chalcogenide semiconductor such as a telluride, for example bismuth telluride. A thermoelectric material including such core-shell particles may have an improved thermoelectric figure of merit compared with a bulk sample of the shell material alone. Embodiments of the invention further include thermoelectric devices using such thermoelectric materials, and preparation techniques.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: October 25, 2011
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Administrators of the Tulane Educational Fund
    Inventors: Qiangfeng Xiao, Yunfeng Lu, Junwei Wang, Minjuan Zhang
  • Publication number: 20110235240
    Abstract: Provided is a new supercapacitor electrode material, comprising multiple interpenetrating networks of nanowires. More specifically, an interpenetrating network of metal oxide nanowires and an interpenetrating network of electrically conductive nanowires may form a composite film having a hierarchal porous structure. This hierarchically porous, interpenetrating network structure can provide the composite film with high capacitance, electrical conductivity and excellent rate performance. The present invention can be generalized towards other capacitor composites, opening a new avenue for a large spectrum of device applications.
    Type: Application
    Filed: February 3, 2011
    Publication date: September 29, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Yunfeng Lu, Zheng Chen
  • Patent number: 8025861
    Abstract: Titanium oxide (usually titanium dioxide) catalyst support particles are doped for electronic conductivity and formed with surface area-enhancing pores for use, for example, in electro-catalyzed electrodes on proton exchange membrane electrodes in hydrogen/oxygen fuel cells. Suitable compounds of titanium and a dopant are dispersed with pore-forming particles in a liquid medium. The compounds are deposited as a precipitate or sol on the pore-forming particles and heated to transform the deposit into crystals of dopant-containing titanium dioxide. If the heating has not decomposed the pore-forming particles, they are chemically removed from the, now pore-enhanced, the titanium dioxide particles.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: September 27, 2011
    Assignees: GM Global Technology Operations LLC, Administrators of the Tulane Educational Fund
    Inventors: Mei Cai, Yunfeng Lu, Zhiwang Wu, Lee Lizhong Feng, Martin S. Ruthkosky, John T. Johnson, Frederick T. Wagner
  • Patent number: 7892515
    Abstract: Carbon with mesopores (about two to fifteen nanometers in average pore size) is made using sucrose as a source of carbon, and silica and phosphoric acid as templates for the mesopore structure in the carbon. A silica sol is prepared in a water/ethanol medium and sucrose is dispersed in the sol. Phosphoric acid may be added to the sol to control pore size in the mesopore size range. The sol is dried, carbonized, and the silica and phosphate materials removed by leaching. The residue is a mesoporous carbon mass having utility as a catalyst support, gas absorbent, and the like.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: February 22, 2011
    Assignees: GM Global Technolgy Operations LLC, Tulane University; Administrators of the Tulane Education Fund
    Inventors: Qingyuan Hu, Yunfeng Lu, Jing Tang, Mei Cai
  • Patent number: 7824646
    Abstract: Mesoporous carbon and silica containing composites are prepared based on the co-assembly of a suitable surfactant in a liquid medium. When a low molecular weight carbonizable polymer and a silica precursor are added to the surfactant solution, a mixture of distinct phases of the materials is formed after solvent evaporation. A polymer/silica solid composite with highly organized mesopores is obtained after surfactant removal. This product has utility as a catalyst support or gas absorbent. And the polymer-silica composite can be easily converted successively to a mesoporous carbon-silica composite and to a bimodal mesoporous carbon material.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: November 2, 2010
    Assignees: GM Global Technology Operations, Inc., Tulane University
    Inventors: Mei Cai, Qingyuan Hu, Yunfeng Lu, Jing Tang
  • Publication number: 20100255266
    Abstract: The present subject matter relates generally to design, synthesis, and characterization of materials with well-defined porous networks of molecular dimensions in which the size and surface energy of the pores can be externally and reversibly controlled to dynamically modulate the adsorption and transport of molecular species.
    Type: Application
    Filed: March 6, 2007
    Publication date: October 7, 2010
    Inventors: Quiang Fu, Venkata R. Goparaju, Linnea K. Ista, Yang Wu, Brett P. Andrzejewski, Yunfeng Lu, Larry A. Sklar, Timothy L. Ward, Gabriel Lopez
  • Patent number: 7790137
    Abstract: A process for synthesizing a metal telluride is provided that includes the dissolution of a metal precursor in a solvent containing a ligand to form a metal-ligand complex soluble in the solvent. The metal-ligand complex is then reacted with a telluride-containing reagent to form metal telluride domains having a mean linear dimension of from 2 to 40 nanometers. NaHTe represents a well-suited telluride reagent. A composition is provided that includes a plurality of metal telluride crystalline domains (PbTe)1-x-y(SnTe)x(Bi2Te3)y??(I) having a mean linear dimension of from 2 to 40 nanometers inclusive where x is between 0 and 1 inclusive and y is between 0 and 1 inclusive with the proviso that x+y is less than or equal to 1. Each of the metal telluride crystalline domains has a surface passivated with a saccharide moiety or a polydentate carboxylate.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: September 7, 2010
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Administrators of the Tulane Educational Fund
    Inventors: Qiangfeng Xiao, Yunfeng Lu, Minjuan Zhang
  • Publication number: 20100160153
    Abstract: Titanium oxide (usually titanium dioxide) catalyst support particles are doped for electronic conductivity and formed with surface area-enhancing pores for use, for example, in electro-catalyzed electrodes on proton exchange membrane electrodes in hydrogen/oxygen fuel cells. Suitable compounds of titanium and a dopant are dispersed with pore-forming particles in a liquid medium. The compounds are deposited as a precipitate or sol on the pore-forming particles and heated to transform the deposit into crystals of dopant-containing titanium dioxide.
    Type: Application
    Filed: March 3, 2010
    Publication date: June 24, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Administrators Of The Tulane Education Fund
    Inventors: Mei Cai, Yunfeng Lu, Zhiwang Wu, Lee Lizhong Feng, Martin S. Ruthkosky, John T. Johnson, Frederick T. Wagner
  • Publication number: 20100021366
    Abstract: Carbon with mesopores (about two to fifteen nanometers in average pore size) is made using sucrose as a source of carbon, and silica and phosphoric acid as templates for the mesopore structure in the carbon. A silica sol is prepared in a water/ethanol medium and sucrose is dispersed in the sol. Phosphoric acid may be added to the sol to control pore size in the mesopore size range. The sol is dried, carbonized, and the silica and phosphate materials removed by leaching. The residue is a mesoporous carbon mass having utility as a catalyst support, gas absorbent, and the like.
    Type: Application
    Filed: May 24, 2007
    Publication date: January 28, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC. @@ TULANE UNIVERSITY, TULANE UNIVERSITY ADMINISTRATORS OF THE TULANE EDUCATIONAL FUND
    Inventors: Qingyuan Hu, Yunfeng Lu, Jing Tang, Mei Cai
  • Publication number: 20080173344
    Abstract: A thermoelectric material includes a composite having a first electrically conducting component and second low thermal conductivity component. The first component may include a semiconductor and the second component may include an inorganic oxide. The thermoelectric composite includes a network of the first component having nanoparticles of the second component dispersed in the network.
    Type: Application
    Filed: November 1, 2007
    Publication date: July 24, 2008
    Inventors: Minjuan Zhang, Yunfeng Lu
  • Publication number: 20080112877
    Abstract: A process for synthesizing a metal telluride is provided that includes the dissolution of a metal precursor in a solvent containing a ligand to form a metal-ligand complex soluble in the solvent. The metal-ligand complex is then reacted with a telluride-containing reagent to form metal telluride domains having a mean linear dimension of from 2 to 40 nanometers. NaHTe represents a well-suited telluride reagent. A composition is provided that includes a plurality of metal telluride crystalline domains (PbTe)1-x-y(SnTe)x(Bi2Te3)y ??(I) having a mean linear dimension of from 2 to 40 nanometers inclusive where x is between 0 and 1 inclusive and y is between 0 and 1 inclusive with the proviso that x+y is less than or equal to 1. Each of the metal telluride crystalline domains has a surface passivated with a saccharide moiety or a polydentate carboxylate.
    Type: Application
    Filed: November 14, 2006
    Publication date: May 15, 2008
    Applicant: Toyota Engineering & Manufacturing North America, Inc.
    Inventors: Qiangfeng Xiao, Yunfeng Lu, Minjuan Zhang
  • Publication number: 20080087314
    Abstract: A thermoelectric material comprises core-shell particles having a core formed from a core material and a shell formed from a shell material. In representative examples, the shell material is a material showing an appreciable thermoelectric effect in bulk. The core material preferably has a lower thermal conductivity than the shell material. In representative examples, the core material is an inorganic oxide such as silica or alumina, and the shell material is a chalcogenide semiconductor such as a telluride, for example bismuth telluride. A thermoelectric material including such core-shell particles may have an improved thermoelectric figure of merit compared with a bulk sample of the shell material alone. Embodiments of the invention further include thermoelectric devices using such thermoelectric materials, and preparation techniques.
    Type: Application
    Filed: October 13, 2006
    Publication date: April 17, 2008
    Applicants: Tulane University, Toyota Engineering & Manufacturing North America, Inc.
    Inventors: Qiangfeng Xiao, Yunfeng Lu, Junwei Wang, Minjuan Zhang
  • Publication number: 20080039580
    Abstract: Mesoporous carbon and silica containing composites are prepared based on the co-assembly of a suitable surfactant in a liquid medium. When a low molecular weight carbonizable polymer and a silica precursor are added to the surfactant solution, a mixture of distinct phases of the materials is formed after solvent evaporation. A polymer/silica solid composite with highly organized mesopores is obtained after surfactant removal. This product has utility as a catalyst support or gas absorbent. And the polymer-silica composite can be easily converted successively to a mesoporous carbon-silica composite and to a bimodal mesoporous carbon material.
    Type: Application
    Filed: May 24, 2007
    Publication date: February 14, 2008
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC. @ @ TULANE UNIVERSITY, TULANE UNIVERSITY ADMINISTRATORS OF THE TULANE EDUCATIONAL FUND
    Inventors: Mei Cai, Qingyuan Hu, Yunfeng Lu, Jing Tang
  • Publication number: 20080036101
    Abstract: A process for synthesizing a metal telluride is provided that includes the dissolution of a metal precursor in a solvent containing a ligand to form a metal-ligand complex soluble in the solvent. The metal-ligand complex is then reacted with a telluride-containing reagent to form metal telluride domains having a mean linear dimension of from 2 to 40 nanometers. NaHTe represents a well-suited telluride reagent. A composition is provided that includes a plurality of metal telluride crystalline domains (PbTe)1-x-y(SnTe)x(Bi2Te3)y ??(I) having a mean linear dimension of from 2 to 40 nanometers inclusive where x is between 0 and 1 inclusive and y is between 0 and 1 inclusive with the proviso that x+y is less than or equal to 1. Each of the metal telluride crystalline domains has a surface passivated with a saccharide moiety or a polydentate carboxylate.
    Type: Application
    Filed: August 14, 2006
    Publication date: February 14, 2008
    Applicant: Toyota Engineering & Manufacturing North America, Inc.
    Inventors: Qiangfeng Xiao, Yunfeng Lu, Minjuan Zhang
  • Patent number: 7309830
    Abstract: A thermoelectric material comprises two or more components, at least one of which is a thermoelectric material. The first component is nanostructured, for example as an electrically conducting nanostructured network, and can include nanowires, nanoparticles, or other nanostructures of the first component. The second component may comprise an electrical insulator, such as an inorganic oxide, other electrical insulator, other low thermal conductivity material, voids, air-filled gaps, and the like. Additional components may be included, for example to improve mechanical properties. Quantum size effects within the nanostructured first component can advantageously modify the thermoelectric properties of the first component. In other examples, the second component may be a thermoelectric material, and additional components may be included.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: December 18, 2007
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Administrators of the Tulane Educational Fund
    Inventors: Minjuan Zhang, Yunfeng Lu
  • Publication number: 20070037041
    Abstract: Titanium oxide (usually titanium dioxide) catalyst support particles are doped for electronic conductivity and formed with surface area-enhancing pores for use, for example, in electro-catalyzed electrodes on proton exchange membrane electrodes in hydrogen/oxygen fuel cells. Suitable compounds of titanium and a dopant are dispersed with pore-forming particles in a liquid medium. The compounds are deposited as a precipitate or sol on the pore-forming particles and heated to transform the deposit into crystals of dopant-containing titanium dioxide. If the heating has not decomposed the pore-forming particles, they are chemically removed from the, now pore-enhanced, the titanium dioxide particles.
    Type: Application
    Filed: August 7, 2006
    Publication date: February 15, 2007
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Mei Cai, Yunfeng LU, Zhiwang WU, Lee Feng, Martin Ruthkosky, John Johnson, Frederick Wagner
  • Publication number: 20060118158
    Abstract: A thermoelectric material comprises two or more components, at least one of which is a thermoelectric material. The first component is nanostructured, for example as an electrically conducting nanostructured network, and can include nanowires, nanoparticles, or other nanostructures of the first component. The second component may comprise an electrical insulator, such as an inorganic oxide, other electrical insulator, other low thermal conductivity material, voids, air-filled gaps, and the like. Additional components may be included, for example to improve mechanical properties. Quantum size effects within the nanostructured first component can advantageously modify the thermoelectric properties of the first component. In other examples, the second component may be a thermoelectric material, and additional components may be included.
    Type: Application
    Filed: May 3, 2005
    Publication date: June 8, 2006
    Inventors: Minjuan Zhang, Yunfeng Lu
  • Publication number: 20060115377
    Abstract: The present invention comprises a transparent and electrically conductive glass capillary for the purpose of containing and heating fluids inside the capillary on the stage of a microscope and a method to investigate and characterize acid neutralization by overbased additives in lubricant oils. The heating capillary was prepared by coating a transparent ITO film on the outside surface of the capillary as an electrically heating jacket. It can generate at least 287° C. when applied appropriate voltage. The desired temperature can be attained at a rate ranging from 75° C./s to 198° C./s and be easily adjusted by changing the supplied voltage.
    Type: Application
    Filed: September 21, 2004
    Publication date: June 1, 2006
    Inventors: Jianzhong Fu, Yunfeng Lu, Kyriakos Papadopoulos
  • Patent number: 7001669
    Abstract: Metal-containing nanostructured films are prepared by electrodepositing a metal-containing composition within the pores of a mesoporous silica template to form a metal-containing silica nanocomposite. The nanocomposite is annealed to strengthen the deposited metal-containing composition. The silica is then removed from the nanocomposite, e.g., by dissolving the silica in an etching solution to provide a self-supporting metal-containing nanostructured film. The nanostructured films have a nanowire or nanomesh architecture depending on the pore structure of the mesoporous silica template used to prepare the films.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: February 21, 2006
    Assignee: The Administration of the Tulane Educational Fund
    Inventors: Yunfeng Lu, Donghai Wang
  • Patent number: RE41612
    Abstract: An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: August 31, 2010
    Assignee: Sandia Corporation
    Inventors: C. Jeffrey Brinker, Yunfeng Lu, Hong You Fan