Patents by Inventor Yung-Chieh Tan

Yung-Chieh Tan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10953416
    Abstract: A liquid saving device includes a liquid guide and a vortex adaptor. The liquid guide includes a primary recess, an indentation, and a plurality of primary pores. The vortex adaptor includes at least one air inlet structure, a trench, a gap and a center through hole. The plurality of primary pores is coupled to the indentation for receiving a first liquid stream to generate a same plurality of second liquid streams at respective ends. At least part of the plurality of primary pores have different lengths. A primary pore has a shorter length if the first primary pore outputs its corresponding second liquid stream with a larger deflection, and vice versa. The trench receives both at least one secondary liquid stream and air to generate a first aerated vortex. An elevated flow of the first aerated vortex with a spray-form liquid stream to generate a second aerated vortex.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: March 23, 2021
    Inventor: Yung-Chieh Tan
  • Publication number: 20190247870
    Abstract: A liquid saving device includes a liquid guide and a vortex adaptor. The liquid guide includes a primary recess, an indentation, and a plurality of primary pores. The vortex adaptor includes at least one air inlet structure, a trench, a gap and a center through hole. The plurality of primary pores is coupled to the indentation for receiving a first liquid stream to generate a same plurality of second liquid streams at respective ends. At least part of the plurality of primary pores have different lengths. A primary pore has a shorter length if the first primary pore outputs its corresponding second liquid stream with a larger deflection, and vice versa. The trench receives both at least one secondary liquid stream and air to generate a first aerated vortex. An elevated flow of the first aerated vortex with a spray-form liquid stream to generate a second aerated vortex.
    Type: Application
    Filed: February 13, 2019
    Publication date: August 15, 2019
    Inventor: Yung-Chieh Tan
  • Patent number: 9855687
    Abstract: Methods of and devices for manufacturing a multi-layered microfluidic filter are disclosed. In one embodiment, method of manufacturing a multi-layered filter comprises providing a first molding plate that includes a plurality of apertures and is coupled to a flow stream source, applying from the flow stream source a first flow stream to pass through the plurality of apertures of the first molding plate, forming a first membrane layer comprising a first set of pores using the first molding plate and the first flow stream, controlling the first flow stream to generate a second flow stream from the first set of pores of the first membrane layer, and forming a second membrane layer comprising a second set of pores using the second flow stream and the first membrane layer.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: January 2, 2018
    Inventor: Yung-Chieh Tan
  • Publication number: 20160009008
    Abstract: Methods of and devices for manufacturing a multi-layered microfluidic filter are disclosed. In one embodiment, method of manufacturing a multi-layered filter comprises providing a first molding plate that includes a plurality of apertures and is coupled to a flow stream source, applying from the flow stream source a first flow stream to pass through the plurality of apertures of the first molding plate, forming a first membrane layer comprising a first set of pores using the first molding plate and the first flow stream, controlling the first flow stream to generate a second flow stream from the first set of pores of the first membrane layer, and forming a second membrane layer comprising a second set of pores using the second flow stream and the first membrane layer.
    Type: Application
    Filed: September 25, 2015
    Publication date: January 14, 2016
    Inventor: Yung-Chieh TAN
  • Publication number: 20110193270
    Abstract: Methods of and devices for making pores, nozzles, and slits are described. In some embodiments, the methods create pattern in the molded substrate by controlling the location and direction of a controlled flow stream through molding plates. The molding plate contains a predefined pattern that is able to be used to create the desired pattern in the molding plate.
    Type: Application
    Filed: February 11, 2011
    Publication date: August 11, 2011
    Inventor: Yung-Chieh Tan
  • Patent number: 7595195
    Abstract: Systems and methods that control the size and composition of emulsified droplets, multi-lamellar and asymmetric vesicles, encapsulation of reagents, membrane proteins, and sorting of vesicles/droplets. More particularly, microfluidic devices for controlled viscous shearing of oil-water emulsions of micro- and nano-scale droplets, the subsequent formation of amphiphilic vesicles such as liposomes, polymer vesicles, micelles, and the like, the post-assembly and post-processing of the droplets including splitting, fusing, sorting and the like, polymer emulsions, and the integration of amphiphilic vesicle production-line on a single microfluidic chip. Preferably, the microfluidic device enables oil-water co-flows with tunable viscous shear forces higher than the immiscible interfacial tension forces that generate favorable conditions for droplet formation.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: September 29, 2009
    Assignee: The Regents of the University of California
    Inventors: Abraham Phillip Lee, Yung-Chieh Tan
  • Publication number: 20090184435
    Abstract: Nano-sized lipid vesicles with tailored properties are used as building blocks to generate lipid tubules between two glass surfaces. The tubules formed not only have defined orientation, width, and length, but they can also grow to be as long as 13 mm under ambient conditions, without externally supplied flow, temperature control, or catalyzing agents. The tubule membrane and its internal aqueous content can be manipulated by controlling the combination of different vesicle's lipid composition and aqueous entrapment. This self-assembly process opens up new pathways for generating complicated and flexible architectures for use in biocompatible molecular and supramolecular engineering. Aspects of the invention generate, for example, tubules encapsulated with siRNA, tubules with multiple branches, and polymerized fluorescent tubules in a single-throughput self-assembly process.
    Type: Application
    Filed: December 8, 2008
    Publication date: July 23, 2009
    Applicant: Washington University in St. Louis
    Inventors: Yung-Chieh Tan, Liang Ma
  • Publication number: 20050032240
    Abstract: Systems and methods that control the size and composition of emulsified droplets, multi-lamellar and asymmetric vesicles, encapsulation of reagents, membrane proteins, and sorting of vesicles/droplets. More particularly, microfluidic devices for controlled viscous shearing of oil-water emulsions of micro- and nano-scale droplets, the subsequent formation of amphiphilic vesicles such as liposomes, polymer vesicles, micelles, and the like, the post-assembly and post-processing of the droplets including splitting, fusing, sorting and the like, polymer emulsions, and the integration of amphiphilic vesicle production-line on a single microfluidic chip. Preferably, the microfluidic device enables oil-water co-flows with tunable viscous shear forces higher than the immiscible interfacial tension forces that generate favorable conditions for droplet formation.
    Type: Application
    Filed: February 11, 2004
    Publication date: February 10, 2005
    Inventors: Abraham Lee, Yung-Chieh Tan