Patents by Inventor Yung-eun Sung

Yung-eun Sung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150196897
    Abstract: The present disclosure relates to a PtAu nanoparticle catalyst heat-treated in the presence of carbon monoxide (CO) and a method for preparing same. Since the PtxAuy nanoparticle catalyst heat-treated under CO atmosphere has high Pt surface area and superior oxygen reduction reaction (ORR) activity, a high-efficiency, high-quality fuel cell can be achieved by applying the catalyst to a fuel cell.
    Type: Application
    Filed: February 28, 2014
    Publication date: July 16, 2015
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jong Hyun JANG, Yung-Eun SUNG, Hee-young PARK, Hyoung-Juhn KIM, Dirk HENKENSMEIER, Suk Woo NAM, Hyung Chul HAM, Tae-Hoon LIM, Sung Jong YOO, Eun Ae CHO, Kug-Seung LEE
  • Publication number: 20150162619
    Abstract: The present invention relates to an electrode catalyst, a method for preparing the electrode catalyst, and a membrane electrode assembly and a fuel cell including the electrode catalyst. The electrode catalyst includes a carbon support and a platinum catalyst supported on the carbon support. A thermally responsive polymer is selectively bound to the carbon support. The electrode catalyst can ensure smooth discharge of water produced as a result of an electrochemical reaction, achieving improved electrical performance of the fuel cell.
    Type: Application
    Filed: October 24, 2013
    Publication date: June 11, 2015
    Inventors: Sang Moon Kim, Namgee Jung, Kahp-Yang Suh, Yung-Eun Sung, Man Soo Choi
  • Publication number: 20150072236
    Abstract: Using metal foams for the electrode of secondary lithium battery, preparing method thereof, and secondary lithium battery including the metal foam. A metal foam is used in an electrode of secondary lithium battery where the surface and the inner pore walls are coated with the active materials, a method of manufacturing such metal foam, and secondary lithium battery including the metal foam.
    Type: Application
    Filed: April 18, 2014
    Publication date: March 12, 2015
    Inventors: Ji Hyun Um, Hyeji Park, Myounggeun Choi, Hyelim Choi, Yong-Hun Cho, Yung-Eun Sung, Heeman Choe
  • Publication number: 20140230890
    Abstract: A dye-sensitized solar cell has a working electrode, electrolyte, and counter electrode. The counter electrode includes a nickel (Ni) foam, titanium (Ti) foam, manganese (Mn) foam, or molybdenum (Mo) foam, and has a surface that is nitrided. The reaction efficiency for the solar cell is enhanced by the increased surface area reacting with the electrolyte, which results from using a metal foam. Mechanical properties, such as strength and ductility, and electroconductivity are improved due to the use of metals. The production costs are reduced by using substitute materials, which are low-cost and have oxidation-reduction efficiency.
    Type: Application
    Filed: September 18, 2013
    Publication date: August 21, 2014
    Applicant: CellMotive Co. Ltd.
    Inventors: Sunha Park, Yong-Hun Cho, Hyungyung Jo, Myounggeun Choi, Yung-Eun Sung, Heeman Choe
  • Publication number: 20140004441
    Abstract: An innovative fuel cell system with MEAs includes a polymer electrolyte membrane, a gas diffusion layer (GDL) made of porous metal foam, and a catalyst layer. A fuel cell has a metal foam layer that improves efficiency and lifetime of the conventional gas diffusion layer, which consists of both gas diffusion barrier (GDB) and microporous layer (MPL). This metal foam GDL enables consistent maintenance of the suitable structure and even distribution of pores during the operation. Due to the combination of mechanical and physical properties of metallic foam, the fuel cell is not deformed by external physical strain. Among many other processing methods of open-cell metal foams, ice-templating provides a cheap, easy processing route suitable for mass production. Furthermore, it provides well-aligned and long channel pores, which improve gas and water flow during the operation of the fuel cell.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Inventors: Yong-Hun Cho, Hyelim Choi, Ok-Hee Kim, Yung-Eun Sung, Heeman Choe
  • Patent number: 8524420
    Abstract: Disclosed is a method for preparing nickel or palladium nanoparticles supported on a carbon support. To a mixture solution wherein a stabilizer is dissolved in 1,2-propanediol, a carbon support is added to prepare a dispersion. Then, a precursor solution wherein a nickel or palladium precursor dissolved in 1,2-propanediol is mixed therewith and stirred. Then, nickel or palladium nanoparticles supported on the carbon support are prepared by reduction. The disclosed method for preparing nickel or palladium nanoparticles supported on a carbon support allows preparation of nanoparticles with narrow particle size distribution and good dispersibility through a simple process and the resulting nickel or palladium nanoparticles may be usefully applied, for example, as electrode materials of fuel cells.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: September 3, 2013
    Assignees: Hyundai Motor Company, SNU & R&DB Foundation
    Inventors: Nak Hyun Kwon, Jae Seung Lee, Bumwook Roh, Yung-Eun Sung, Tae-Yeol Jeon, Hee-Young Park, Ju Wan Lim, Young-Hoon Chung
  • Publication number: 20120244457
    Abstract: The present invention provides an electrode for a polymer electrolyte membrane fuel cell. In one embodiment, a planar nanoporous or microporous metal foam or metal aerogel structure is provided, from which an electrode with a catalyst layer integrally formed by fixing a catalyst in the metal foam or metal aerogel is formed.
    Type: Application
    Filed: July 6, 2011
    Publication date: September 27, 2012
    Applicants: SNU R&DB FOUNDATION, HYUNDAI MOTOR COMPANY
    Inventors: Nak Hyun Kwon, In Chul Hwang, Jae Seung Lee, Bum Wook Roh, Yung Eun Sung, Ju Wan Lim, Yoon Hwan Cho, Nam Gee Jung, Hee Man Choe, Yong Hun Cho
  • Patent number: 8110521
    Abstract: The present invention features a method for preparing core-shell nanoparticles supported on carbon. In particular, the present invention features a method for preparing core-shell nanoparticles supported on carbon, including: dispersing core nanoparticle powder supported on carbon in ethanol; adding a metal precursor which forms a shell and hydroquinone thereto; and mixing and reducing the same. Preferably, the disclosed method for preparing core-shell nanoparticles supported on carbon enables coating of transition metal nanoparticles including platinum on the surface of core metal nanoparticles at a monolayer level. Prepared core-shell nanoparticles of the present invention may be useful as catalysts or electrode materials of fuel cells.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: February 7, 2012
    Assignees: Hyundai Motor Company, SNU R&DB Foundation
    Inventors: Jae Seung Lee, Yung-Eun Sung, Tae-Yeol Jeon, Hee-Young Park
  • Publication number: 20110318668
    Abstract: Disclosed herein are a membrane-electrode assembly for a fuel cell, a fuel cell, and a manufacturing method thereof. The present invention forms a micro current collecting layer between a gas diffusion layer and a micro porous layer and surface-contacts a pair of laminates for an electrode so that each electrolyte layer formed by applying an electrolyte solution thereon contacts with each other, thereby shortening a moving distance of electrons to minimize the current collecting resistance and loss and reduce the interface resistance.
    Type: Application
    Filed: March 28, 2011
    Publication date: December 29, 2011
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Eon Soo Lee, Yung Eun Sung, Min Jeh Ahn, Yong Hun Cho, Nam Gee Jung, Jae Hyuk Jang
  • Publication number: 20110129763
    Abstract: The present invention features a method for preparing core-shell nanoparticles supported on carbon. In particular, the present invention features a method for preparing core-shell nanoparticles supported on carbon, including: dispersing core nanoparticle powder supported on carbon in ethanol; adding a metal precursor which forms a shell and hydroquinone thereto; and mixing and reducing the same. Preferably, the disclosed method for preparing core-shell nanoparticles supported on carbon enables coating of transition metal nanoparticles including platinum on the surface of core metal nanoparticles at a monolayer level. Prepared core-shell nanoparticles of the present invention may be useful as catalysts or electrode materials of fuel cells.
    Type: Application
    Filed: April 1, 2010
    Publication date: June 2, 2011
    Applicants: HYUNDAI MOTOR COMPANY, SNU R&DB FOUNDATION
    Inventors: Jae Seung Lee, Yung-Eun Sung, Tae-Yeol Jeon, Hee-Young Park
  • Publication number: 20110123908
    Abstract: Disclosed is a method for preparing nickel or palladium nanoparticles supported on a carbon support. To a mixture solution wherein a stabilizer is dissolved in 1,2-propanediol, a carbon support is added to prepare a dispersion. Then, a precursor solution wherein a nickel or palladium precursor dissolved in 1,2-propanediol is mixed therewith and stirred. Then, nickel or palladium nanoparticles supported on the carbon support are prepared by reduction. The disclosed method for preparing nickel or palladium nanoparticles supported on a carbon support allows preparation of nanoparticles with narrow particle size distribution and good dispersibility through a simple process and the resulting nickel or palladium nanoparticles may be usefully applied, for example, as electrode materials of fuel cells.
    Type: Application
    Filed: May 13, 2010
    Publication date: May 26, 2011
    Applicants: HYUNDAI MOTOR COMPANY, SNU R&DB FOUNDATION
    Inventors: Nak Hyun Kwon, Jae Seung Lee, Bumwook Roh, Yung-Eun Sung, Tae-Yeol Jeon, Hee-Young Park, Ju Wan Lim, Young-Hoon Chung
  • Publication number: 20110104588
    Abstract: The present invention provides a method of synthesizing a nano-sized transition metal catalyst on a carbon support, including dissolving a stabilizer in ethanol thus preparing a mixture solution, adding a support to the mixture solution thus preparing a dispersion solution, dissolving a transition metal precursor in ethanol thus preparing a precursor solution, mixing the precursor solution with the dispersion solution with stirring, and then performing reduction, thus preparing the nano-sized transition metal catalyst. This method enables the synthesis of transition metal nanoparticles supported on carbon powder having a narrow particle size distribution and a wide degree of dispersion through a simple process, and is thus usefully applied to the formation of an electrode material or the like of a fuel cell.
    Type: Application
    Filed: May 6, 2010
    Publication date: May 5, 2011
    Applicants: HYUNDAI MOTOR COMPANY, SNU R&DB FOUNDATION
    Inventors: Nak Hyun Kwon, Inchul Hwang, Jae Seung Lee, Yung-Eun Sung, Tae-Yeol Jeon, Sung Jong Yoo, Kug-Seung Lee, Yong-Hun Cho
  • Patent number: 7825057
    Abstract: The present invention relates to a process for preparing electrode catalyst materials for a polymer electrolyte membrane fuel cell (PEMFC), and particularly to a high-performance platinum-non-platinum mixed electrode catalyst (Pt—RuOs/C) having a physically mixed structure of RuOs alloy and platinum materials, which is prepared by adding a small amount of platinum (Pt) to RuOs alloy materials highly dispersed on a carbon support, where the amount of platinum used is drastically reduced as compared to the conventional platinum materials, thus lowering the manufacturing cost.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: November 2, 2010
    Assignee: Hyundai Motor Company
    Inventors: Nak Hyun Kwon, Yung Eun Sung, In Su Park, Yong Hun Cho, In Chul Hwang, Il Hee Cho
  • Publication number: 20090227445
    Abstract: A method of preparing a platinum alloy catalyst for a fuel cell electrode includes: (a) adding a carbon material, a platinum precursor, and a transition metal precursor to ethanol and dispersing the mixture; (b) adding sodium acetate powder or an ammonia solution containing ethanol as a solvent to the solution obtained in step (a) and stirring the resulting solution; (c) adding sodium borohydride to the solution obtained in step (b) and reducing the metal ions of the platinum precursor and the transition metal precursor; and (d) obtaining a platinum alloy catalyst in the form of powder through washing and drying processes. This method can reduce the amount of platinum to be used for manufacturing a fuel cell electrode and thereby reduce the manufacturing cost.
    Type: Application
    Filed: November 24, 2008
    Publication date: September 10, 2009
    Applicants: HYUNDAI MOTOR COMPANY, SEOUL NATIONAL UNIVERSITY INDUSTRY FOUNDATION
    Inventors: Jae Seung Lee, Yung-Eun Sung, Yong-Hun Cho, Tae Yeol Jeon
  • Publication number: 20090005237
    Abstract: The present invention relates to a process for preparing electrode catalyst materials for a polymer electrolyte membrane fuel cell (PEMFC), and particularly to a high-performance platinum-non-platinum mixed electrode catalyst (Pt—RuOs/C) having a physically mixed structure of RuOs alloy and platinum materials, which is prepared by adding a small amount of platinum (Pt) to RuOs alloy materials highly dispersed on a carbon support, where the amount of platinum used is drastically reduced as compared to the conventional platinum materials, thus lowering the manufacturing cost.
    Type: Application
    Filed: November 16, 2007
    Publication date: January 1, 2009
    Applicant: Hyundai Motor Company
    Inventors: Nak Hyun Kwon, Yung Eun Sung, In Su Park, Yong Hun Cho, In Chul Hwang, Il Hee Cho
  • Patent number: 6916764
    Abstract: Provided is a Pt—Ru based quaternary metal anode catalyst for a direct methanol fuel cell (DMFC). The Pt—Ru based quaternary metal anode catalyst has high activity to methanol oxidation and strong resistance to catalyst poisoning due to carbon monoxide (CO), which is a byproduct of the methanol oxidation. Therefore, the Pt—Ru based quaternary metal anode catalyst can give high power density and can replace existing commercial catalysts.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: July 12, 2005
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kyoung Hwan Choi, Seol-ah Lee, Yung-eun Sung, Kyung-won Park, Jong-ho Choi
  • Publication number: 20050016586
    Abstract: A method for fabricating a counter electrode for a dye-sensitized solar cell includes co-sputtering platinum and a metal oxide as target materials to deposit nanocrystalline platinum and an amorphous metal oxide on the substrate. The counter electrode exhibits improved performances as an electro-catalyst to assist in the reduction of I3? during operation of a dye-sensitized solar cell.
    Type: Application
    Filed: January 23, 2004
    Publication date: January 27, 2005
    Applicant: Kwangju Institute of Science and Technology
    Inventors: Seok-Soon Kim, Kyung-Won Park, Jun-Ho Yum, Yung-Eun Sung
  • Patent number: 6627060
    Abstract: A method for coating a phosphor on a flat display using electrophoretic deposition (EPD) and lithography is provided. In the method, an adhesive strength can be enhanced without passing through a high-temperature thermal treatment process as a post-process. Phosphor powders are coated on a substrate by a field emission display (FED) and then a ultraviolet (UV) curable layer is coated. Then, an adhesive strength of the phosphor can be greatly enhanced through UV irradiation, in comparison with a post-process such as a thermal treatment process. Also, the UV curable layer can be lithographically etched by the UV light, and thus the phosphor can be coated by a predetermined pattern, to then be applied to a next-generation display such as a FED or PDP as an optimal method for full color realization.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: September 30, 2003
    Assignee: Kwangju Institute of Science and Technology
    Inventors: Jun Ho Yum, Yung Eun Sung
  • Publication number: 20030157393
    Abstract: Provided is a Pt—Ru based quaternary metal anode catalyst for a direct methanol fuel cell (DMFC). The Pt—Ru based quaternary metal anode catalyst has high activity to methanol oxidation and strong resistance to catalyst poisoning due to carbon monoxide (CO), which is a byproduct of the methanol oxidation.
    Type: Application
    Filed: September 13, 2002
    Publication date: August 21, 2003
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kyoung Hwan Choi, Seol-Ah Lee, Yung-Eun Sung, Kyung-Won Park, Jong-Ho Choi
  • Patent number: 6506228
    Abstract: A method for preparing a platinum alloy electrode catalyst for DMFC using anhydrous metal chlorides. The method includes reducing platinum chloride and non-aqueous second metal chloride with boron lithium hydride (LiBH4) in a water-incompatible organic solvent in a nitrogen atmosphere to form nano-sized particles of colloidal platinum alloy, and drying the platinum alloy particles without any heat treatment. The method of preparing a platinum alloy catalyst according to the present invention makes it possible to prepare platinum alloy particles having a narrow range of size distribution and an average particle size of less than 2 nm with ease, relative to the conventional methods. The platinum alloy particles thus obtained can be used as an electrode catalyst for DMFC to enhance methanol oxidation performance.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: January 14, 2003
    Assignee: Kwangju Institute of Science and Technology
    Inventors: Seol Ah Lee, Kyung Won Park, Boo Kil Kwon, Yung Eun Sung