Patents by Inventor Yung-Ho Chuang

Yung-Ho Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9529182
    Abstract: An improved solid-state laser for generating sub-200 nm light is described. This laser uses a fundamental wavelength between about 1030 nm and 1065 nm to generate the sub-200 nm light. The final frequency conversion stage of the laser creates the sub-200 nm light by mixing a wavelength of approximately 1109 nm with a wavelength of approximately 234 nm. By proper selection of non-linear media, such mixing can be achieved by nearly non-critical phase matching. This mixing results in high conversion efficiency, good stability, and high reliability.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: December 27, 2016
    Assignee: KLA—Tencor Corporation
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, Yujun Deng, Justin Dianhuan Liou, Vladimir Dribinski, John Fielden
  • Patent number: 9509112
    Abstract: A deep ultra-violet (DUV) continuous wave (CW) laser includes a fundamental CW laser configured to generate a fundamental frequency with a corresponding wavelength between about 1 ?m and 1.1 ?m, a third harmonic generator module including one or more periodically poled non-linear optical (NLO) crystals that generate a third harmonic and an optional second harmonic, and one of a fourth harmonic generator module and a fifth harmonic generator. The fourth harmonic generator module includes a cavity resonant at the fundamental frequency configured to combine the fundamental frequency with the third harmonic to generate a fourth harmonic. The fourth harmonic generator module includes either a cavity resonant at the fundamental frequency for combining the fundamental frequency with the third harmonic to generate a fifth harmonic, or a cavity resonant at the second harmonic frequency for combining the second harmonic and the third harmonic to generate the fifth harmonic.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: November 29, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, Xiaoxu Lu, John Fielden
  • Patent number: 9478402
    Abstract: A photomultiplier tube includes a semiconductor photocathode and a photodiode. Notably, the photodiode includes a p-doped semiconductor layer, an n-doped semiconductor layer formed on a first surface of the p-doped semiconductor layer to form a diode, and a pure boron layer formed on a second surface of the p-doped semiconductor layer. A gap between the semiconductor photocathode and the photodiode may be less than about 1 mm or less than about 500 ?m. The semiconductor photocathode may include gallium nitride, e.g. one or more p-doped gallium nitride layers. In other embodiments, the semiconductor photocathode may include silicon. This semiconductor photocathode can further include a pure boron coating on at least one surface.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: October 25, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, David L. Brown, John Fielden
  • Patent number: 9462206
    Abstract: A module for high speed image processing includes an image sensor for generating a plurality of analog outputs representing an image and a plurality of HDDs for concurrently processing the plurality of analog outputs. Each HDD is an integrated circuit configured to process in parallel a predetermined set of the analog outputs. Each channel of the HDD can include an AFE for conditioning a signal representing one sensor analog output, an ADC for converting a conditioned signal into a digital signal, and a data formatting block for calibrations and formatting the digital signal for transport to an off-chip device. The HDDs and drive electronics are combined with the image sensor into one package to optimize signal integrity and high dynamic range, and to achieve high data rates through use of synchronized HDD channels. Combining multiple modules results in a highly scalable imaging subsystem optimized for inspection and metrology applications.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: October 4, 2016
    Assignee: KLA-Tencor Coporation
    Inventors: David L. Brown, Mansour Kermat, Lance Glasser, Henrik Nielsen, Guowu Zheng, Kurt Lehman, Kenneth F. Hatch, Yung-Ho Chuang, Venkatraman Iyer
  • Patent number: 9459215
    Abstract: A system for optically inspection one or more samples includes a sample stage, a laser system configured for illuminating a portion of the surface of the one or more samples disposed on the sample stage, and a detector configured to receive at least a portion of illumination reflected from the surface of the sample. The laser system includes an NLO crystal annealed within a selected temperature range. In addition, the NLO crystal is passivated with at least one of hydrogen, deuterium, a hydrogen-containing compound or a deuterium-containing compound to a selected passivation level. Further, the laser system includes a light source configured to generate light of a selected wavelength. The light source is configured to transmit light through the NLO crystal. The laser system includes a crystal housing unit configured to house the NLO crystal.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: October 4, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, Vladimir Dribinski
  • Publication number: 20160285223
    Abstract: A pulse multiplier includes a polarizing beam splitter, a wave plate, and a set of multi-surface reflecting components (e.g., one or more etalons and one or more mirrors). The polarizing beam splitter passes input laser pulses through the wave plate to the multi-surface reflecting components, which reflect portions of each input laser pulse back through the wave plate to the polarizing beam splitter. The polarizing beam splitter reflects each reflected portion to form an output of the pulse multiplier. The multi-surface reflecting components are configured such that the output pulses exiting the pulse multiplier have an output repetition pulse frequency rate that is at least double the input repetition pulse frequency.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 29, 2016
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, Justin Dianhuan Liou, Vladimir Dribinski, David L. Brown
  • Patent number: 9426400
    Abstract: A method of operating an image sensor with a continuously moving object is described. In this method, a timed delay integration mode (TDI-mode) operation can be performed during an extended-time illumination pulse. During this TDI-mode operation, charges stored by pixels of the image sensor are shifted only in a first direction, and track the image motion. Notably, a split-readout operation is performed only during non-illumination. During this split-readout operation, first charges stored by first pixels of the image sensor are shifted in the first direction and second charges stored by second pixels of the image sensor are concurrently shifted in a second direction, the second direction being opposite to the first direction.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: August 23, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: David L. Brown, Yung-Ho Chuang, Yury Yuditsky
  • Publication number: 20160197449
    Abstract: A laser for generating deep ultra-violet (DUV) continuous wave (CW) light includes a second-harmonic generator and a fourth-harmonic generator. The fourth-harmonic generator includes a plurality of mirrors as well as a first non-linear optical (NLO) crystal and a pair of tilted plates. The first NLO crystal generates the light having the fourth harmonic wavelength and a first astigmatism, and is placed in operative relation to the plurality of mirrors. The pair of tilted plates is placed in operative relation to the first NLO crystal such that the light having the second harmonic wavelength passes through both of the tilted plates. Notably, the pair of tilted plates are disposed at substantially equal and opposite angles about respective parallel axes such that they introduce a second astigmatism that corrects for the first astigmatism while minimizing displacement of the circulated light.
    Type: Application
    Filed: February 8, 2016
    Publication date: July 7, 2016
    Inventor: Yung-Ho Chuang
  • Patent number: 9377414
    Abstract: Inspection of EUV patterned masks, blank masks, and patterned wafers generated by EUV patterned masks requires high magnification and a large field of view at the image plane. An EUV inspection system can include a light source directed to an inspected surface, a detector for detecting light deflected from the inspected surface, and an optic configuration for directing the light from the inspected surface to the detector. In particular, the detector can include a plurality of sensor modules. Additionally, the optic configuration can include a plurality of mirrors that provide magnification of at least 100× within an optical path less than 5 meters long. In one embodiment, the optical path is approximately 2-3 meters long.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: June 28, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, Richard W. Solarz, David R. Shafer, Bin-Ming Benjamin Tsai, David L. Brown
  • Publication number: 20160169815
    Abstract: A system for optically inspection one or more samples includes a sample stage, a laser system configured for illuminating a portion of the surface of the one or more samples disposed on the sample stage, and a detector configured to receive at least a portion of illumination reflected from the surface of the sample. The laser system includes an NLO crystal annealed within a selected temperature range. In addition, the NLO crystal is passivated with at least one of hydrogen, deuterium, a hydrogen-containing compound or a deuterium-containing compound to a selected passivation level. Further, the laser system includes a light source configured to generate light of a selected wavelength. The light source is configured to transmit light through the NLO crystal. The laser system includes a crystal housing unit configured to house the NLO crystal.
    Type: Application
    Filed: January 29, 2016
    Publication date: June 16, 2016
    Inventors: Yung-Ho Chuang, Vladimir Dribinski
  • Patent number: 9347890
    Abstract: A method of inspecting a sample at high speed includes directing and focusing radiation onto a sample, and receiving radiation from the sample and directing received radiation to an image sensor. Notably, the method includes driving the image sensor with predetermined signals. The predetermined signals minimize a settling time of an output signal of the image sensor. The predetermined signals are controlled by a phase accumulator, which is used to select look-up values. The driving can further include loading an initial phase value, selecting most significant bits of the phase accumulator, and converting the look-up values to an analog signal. In one embodiment, for each cycle of a phase clock, a phase increment can be added to the phase accumulator. The driving can be performed by a custom waveform generator.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: May 24, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: David L. Brown, Yung-Ho Chuang, John Fielden
  • Patent number: 9318869
    Abstract: A laser for generating an output wavelength of approximately 193.4 nm includes a fundamental laser, an optical parametric generator, a fourth harmonic generator, and a frequency mixing module. The optical parametric generator, which is coupled to the fundamental laser, can generate a down-converted signal. The fourth harmonic generator, which may be coupled to the optical parametric generator or the fundamental laser, can generate a fourth harmonic. The frequency mixing module, which is coupled to the optical parametric generator and the fourth harmonic generator, can generate a laser output at a frequency equal to a sum of the fourth harmonic and twice a frequency of the down-converted signal.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: April 19, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, Vladimir Dribinski, Yujun Deng, John Fielden
  • Patent number: 9310296
    Abstract: Optimization of optical parametric models for structural analysis using optical critical dimension metrology is described. A method includes determining a first optical model fit for a parameter of a structure. The first optical model fit is based on a domain of quantities for a first model of the structure. A first near optical field response is determined for a first quantity of the domain of quantities and a second near optical field response is determined for a second, different quantity of the domain of quantities. The first and second near optical field responses are compared to locate a common region of high optical field intensity for the parameter of the structure. The first model of the structure is modified to provide a second, different model of the structure. A second, different optical model fit is determined for the parameter of the structure based on the second model of the structure.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: April 12, 2016
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Thaddeus G. Dziura, Yung-Ho Chuang, Bin-ming Benjamin Tsai, Xuefeng Liu, John J. Hench
  • Patent number: 9293882
    Abstract: A laser for generating deep ultra-violet (DUV) continuous wave (CW) light includes a second-harmonic generator and a fourth-harmonic generator. The fourth-harmonic generator includes a plurality of mirrors as well as first and second non-linear optical (NLO) crystals. The first NLO crystal generates the light having the fourth harmonic wavelength, and is placed in operative relation to the plurality of mirrors. The second NLO crystal is placed in operative relation to the first NLO crystal such that the light having the second harmonic wavelength passes through both the first and the second NLO crystals. Notably, the second optical axes of the second NLO crystal are rotated about a direction of propagation of the light within the second NLO crystal approximately 90 degrees relative to the first optical axes of the first NLO crystal. The second NLO crystal provides no wavelength conversion.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: March 22, 2016
    Assignee: KLA-Tencor Corporation
    Inventor: Yung-Ho Chuang
  • Publication number: 20160056606
    Abstract: An improved laser uses a pump laser with a wavelength near 1109 nm and a fundamental wavelength near 1171 nm to generate light at a wavelength between approximately 189 nm and approximately 200 nm, e.g. 193 nm. The laser mixes the 1109 nm pump wavelength with the 5th harmonic of the 1171 nm fundamental, which is at a wavelength of approximately 234.2 nm. By proper selection of non-linear media, such mixing can be achieved by nearly non-critical phase matching. This mixing results in high conversion efficiency, good stability, and high reliability.
    Type: Application
    Filed: March 13, 2014
    Publication date: February 25, 2016
    Applicant: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, Justin Dianhuan Liou, Vladimir Dribinski, John Fielden
  • Patent number: 9250178
    Abstract: The present invention includes an exposure chamber configured to contain a passivating gas having a selected hydrogen concentration, the exposure chamber further configured to contain at least one NLO crystal for exposure to the passivating gas within the chamber, a passivating gas source fluidically connected to the exposure chamber, the passivating gas source configured to supply passivating gas to an interior portion of the exposure chamber, and a substrate configured to hold the NLO crystal within the chamber, the substrate further configured to maintain a temperature of the NLO crystal at or near a selected temperature, the selected temperature being below a melting temperature of the NLO crystal.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: February 2, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, Vladimir Dribinski
  • Publication number: 20150268176
    Abstract: A DUV laser includes an optical bandwidth filtering device, such as etalon, which is disposed outside of the laser oscillator cavity of the fundamental laser, and which directs one range of wavelengths into one portion of a frequency conversion chain and another range of wavelengths into another portion of the frequency conversion train, thereby reducing the bandwidth of the DUV laser output while maintaining high conversion efficiency in the frequency conversion chain.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 24, 2015
    Inventors: Yujun Deng, Yung-Ho Chuang, John Fielden
  • Patent number: 9077862
    Abstract: An inspection system for inspecting a surface of a wafer/mask/reticle can include a modular array. The modular array can include a plurality of time delay integration (TDI) sensor modules, each TDI sensor module having a TDI sensor and a plurality of localized circuits for driving and processing the TDI sensor. At least one of the localized circuits can control a clock associated with the TDI sensor. At least one light pipe can be used to distribute a source illumination to the plurality of TDI sensor modules. The plurality of TDI sensor modules can be positioned capture a same inspection region or different inspection regions. The plurality of TDI sensor modules can be identical or provide for different integration stages. Spacing of the modules can be arranged to provide 100% coverage of the inspection region in one pass or for fractional coverage requiring two or more passes for complete coverage.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: July 7, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: David L. Brown, Yung-Ho Chuang
  • Publication number: 20150177159
    Abstract: A method of inspecting a sample at high speed includes directing and focusing radiation onto a sample, and receiving radiation from the sample and directing received radiation to an image sensor. Notably, the method includes driving the image sensor with predetermined signals. The predetermined signals minimize a settling time of an output signal of the image sensor. The predetermined signals are controlled by a phase accumulator, which is used to select look-up values. The driving can further include loading an initial phase value, selecting most significant bits of the phase accumulator, and converting the look-up values to an analog signal. In one embodiment, for each cycle of a phase clock, a phase increment can be added to the phase accumulator. The driving can be performed by a custom waveform generator.
    Type: Application
    Filed: May 8, 2014
    Publication date: June 25, 2015
    Applicant: KLA-Tencor Corporation
    Inventors: David L. Brown, Yung-Ho Chuang, John Fielden
  • Patent number: 9059560
    Abstract: Laser-induced damage in an optical material can be mitigated by creating conditions at which light absorption is minimized. Specifically, electrons populating defect energy levels of a band gap in an optical material can be promoted to the conduction band—a process commonly referred to as bleaching. Such bleaching can be accomplished using a predetermined wavelength that ensures minimum energy deposition into the material, ideally promoting electron to just inside the conduction band. In some cases phonon (i.e. thermal) excitation can also be used to achieve higher depopulation rates. In one embodiment, a bleaching light beam having a wavelength longer than that of the laser beam can be combined with the laser beam to depopulate the defect energy levels in the band gap. The bleaching light beam can be propagated in the same direction or intersect the laser beam.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 16, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Vladimir Dribinski, Yung-Ho Chuang