Patents by Inventor Yung-Hsiang Wang

Yung-Hsiang Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11719643
    Abstract: A method for detecting dust mite antigens includes the steps of collecting a dust sample, applying an extraction and cleanup procedure for dust mite antigens from the dust sample in order to obtain a sample solution ready for measurement, and placing the sample solution on a SERS chip without immunological modification and under a Raman spectrometer for SERS detection in order to identify whether any dust mite antigens exist in the sample solution.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: August 8, 2023
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Chun-Yu Chuang, Pin-Hsuan Yeh, Chao-Ming Tsen, Ching-Wei Yu, Wei-Chung Chao, Yung-Hsiang Wang, Cheng-Chien Li
  • Publication number: 20230219101
    Abstract: A fluid pipe magnetization unit includes a ferromagnetism casing, a plurality of magnetic rods, and at least one flow limiting element. The magnetic rods include at least one first magnetic rod and at least one second magnetic rod. Inner elements of the first magnetic rod and the second magnetic rod are alternately positioned with opposite magnetic poles in the ferromagnetism casing. The at least one flow limiting element is arranged in at least one weak magnetic area in the ferromagnetism casing to prevent fluid from flowing through the at least one weak magnetic area. In addition, a fluid pipe magnetization device with the same is also disclosed herein.
    Type: Application
    Filed: May 20, 2022
    Publication date: July 13, 2023
    Inventors: Ching-Ho YU, Yung-Hsiang WANG, Chih-Chieh MO
  • Patent number: 11506611
    Abstract: A surface-enhanced Raman scattering (SERS) detection method is provided for detecting a target analyte in a sample. The SERS detection method generally includes the steps of: (a). preparing an extract of the sample; (b). introducing the sample extract onto a SERS substrate, causing the target analyte to be absorbed in the SERS substrate; (c). introducing a volatile organic solvent onto the SERS substrate to have the target analyte of the sample extract dissolved and comes out of the SERS substrate; (d). irradiating the SERS substrate with light to evaporate the volatile organic solvent, leaving a more condensed target analyte on the SERS substrate; (e). irradiating the condensed target analyte with laser light to have the target analyte penetrate deeply into the SERS substrate; and (f). performing Raman measurement with a laser beam focusing on the SERS substrate to analyze the target analyte.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: November 22, 2022
    Assignee: PHANSCO CO., LTD.
    Inventors: Chao-Ming Tsen, Ching-Wei Yu, Wei-Chung Chao, Yung-Hsiang Wang, Cheng-Chien Li, Shao-Kai Lin, Tzu-Hung Hsu, Chang-Jung Wen
  • Patent number: 10664026
    Abstract: A portable electronic device including a shell, a cover plate, a battery module, a heat generating element and a heat pipe. The cover plate and the shell jointly define an accommodating space. The battery module includes an extending portion protruding from a surface of the battery module for jointly defining a stepped groove with the surface. The heat generating element is disposed in the accommodating space. The heat pipe is disposed in the stepped groove and thermally coupled to the heat generating element.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: May 26, 2020
    Assignee: HTC Corporation
    Inventors: Yung-Hsiang Wang, Li-Hsun Chang, Ting-An Kuo, Cheng-Te Chen
  • Publication number: 20200158646
    Abstract: A surface-enhanced Raman scattering (SERS) detection method is provided for detecting a target analyte in a sample. The SERS detection method generally includes the steps of: (a). preparing an extract of the sample; (b). introducing the sample extract onto a SERS substrate, causing the target analyte to be absorbed in the SERS substrate; (c). introducing a volatile organic solvent onto the SERS substrate to have the target analyte of the sample extract dissolved and comes out of the SERS substrate; (d). irradiating the SERS substrate with light to evaporate the volatile organic solvent, leaving a more condensed target analyte on the SERS substrate; (e). irradiating the condensed target analyte with laser light to have the target analyte penetrate deeply into the SERS substrate; and (f). performing Raman measurement with a laser beam focusing on the SERS substrate to analyze the target analyte.
    Type: Application
    Filed: July 20, 2017
    Publication date: May 21, 2020
    Inventors: CHAO-MING TSEN, CHING-WEI YU, WEI-CHUNG CHAO, YUNG-HSIANG WANG, CHENG-CHIEN LI, SHAO-KAI LIN, TZU-HUNG HSU, CHANG-JUNG WEN
  • Publication number: 20190360938
    Abstract: A method for detecting dust mite antigens includes the steps of collecting a dust sample, applying an extraction and cleanup procedure for dust mite antigens from the dust sample in order to obtain a sample solution ready for measurement, and placing the sample solution on a SERS chip without immunological modification and under a Raman spectrometer for SERS detection in order to identify whether any dust mite antigens exist in the sample solution.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 28, 2019
    Inventors: CHUN-YU CHUANG, PIN-HSUAN YEH, CHAO-MING TSEN, CHING-WEI YU, WEI-CHUNG CHAO, YUNG-HSIANG WANG, CHENG-CHIEN LI
  • Publication number: 20180373299
    Abstract: A portable electronic device including a shell, a cover plate, a battery module, a heat generating element and a heat pipe. The cover plate and the shell jointly define an accommodating space. The battery module includes an extending portion protruding from a surface of the battery module for jointly defining a stepped groove with the surface. The heat generating element is disposed in the accommodating space. The heat pipe is disposed in the stepped groove and thermally coupled to the heat generating element.
    Type: Application
    Filed: August 29, 2018
    Publication date: December 27, 2018
    Applicant: HTC Corporation
    Inventors: Yung-Hsiang Wang, Li-Hsun Chang, Ting-An Kuo, Cheng-Te Chen
  • Patent number: 10095284
    Abstract: A portable electronic device including a shell, a cover plate, a battery module, a heat generating element and a heat pipe. The shell includes an arc-shaped surface. The cover plate and the shell jointly define an accommodating space. The battery module is disposed in the accommodating space, and the battery module and the arc-shaped surface have a gap therebetween. The heat generating element is disposed in the accommodating space. The heat pipe is disposed in the gap and thermally coupled to the heat generating element. Moreover, the battery module also includes a stepped groove, and the heat pipe is disposed in the stepped groove.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: October 9, 2018
    Assignee: HTC Corporation
    Inventors: Yung-Hsiang Wang, Li-Hsun Chang, Ting-An Kuo, Cheng-Te Chen
  • Publication number: 20170220081
    Abstract: A portable electronic device including a shell, a cover plate, a battery module, a heat generating element and a heat pipe. The shell includes an arc-shaped surface. The cover plate and the shell jointly define an accommodating space. The battery module is disposed in the accommodating space, and the battery module and the arc-shaped surface have a gap therebetween. The heat generating element is disposed in the accommodating space. The heat pipe is disposed in the gap and thermally coupled to the heat generating element. Moreover, the battery module also includes a stepped groove, and the heat pipe is disposed in the stepped groove.
    Type: Application
    Filed: January 29, 2016
    Publication date: August 3, 2017
    Inventors: Yung-Hsiang Wang, Li-Hsun Chang, Ting-An Kuo, Cheng-Te Chen