Patents by Inventor Yung-I Huang

Yung-I Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145653
    Abstract: A manufacturing method of a display device includes forming light emitting components on a first substrate, the light emitting components include a first side and a second side, and the second side is away from the first substrate; forming a circuit layer on the first substrate and on the second side of the light emitting components; forming a first protective layer on the circuit layer and forming an insulating layer on the first protective layer; removing the first substrate after forming a second substrate on the insulating layer; forming a black matrix layer on the first side of the light emitting components, and the black matrix layer includes openings; forming light conversion layers in the openings of the black matrix layer; forming a second protective layer on the black matrix layer and the light conversion layers; and forming a third substrate on the second protective layer.
    Type: Application
    Filed: May 12, 2023
    Publication date: May 2, 2024
    Applicant: HANNSTAR DISPLAY CORPORATION
    Inventors: Chun-I Chu, Yu-Chi Chiao, Yung-Li Huang, Hung-Ming Chang, Cheng-Yu Lin, Huan-Hsun Hsieh, CHeng-Pei Huang
  • Patent number: 11945282
    Abstract: A gas detection and cleaning system for a vehicle is disclosed and includes an external modular base, a gas detection module and a cleaning device. The gas detection module is connected to a first external connection port of the external modular base to detect a gas in the vehicle and output the information datum. The information datum is transmitted through the first external connection port to a driving and controlling module of the external modular base, processed and converted into an actuation information datum for being externally outputted through a second external connection port of the external modular base. The cleaning device is connected with the second external connection port through an external port to receive the actuation information datum outputted from the second external connection port to actuate or close the cleaning device.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: April 2, 2024
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Yung-Lung Han, Chi-Feng Huang, Chin-Wen Hsieh, Tsung-I Lin, Yang Ku, Yi-Ting Lu
  • Patent number: 11944935
    Abstract: A gas detection purification device is disclosed and includes a main body, a purification unit, a gas guider, a gas detection module and a controlling-driving module. The main body includes an inlet, an outlet, an external socket and a gas-flow channel disposed between the inlet and the outlet. The purification unit is disposed in the gas-flow channel for filtering gas introduced through the gas-flow channel. The gas guider is disposed in the gas channel and located at a side of the purification unit. The gas is inhaled through the inlet, flows through the purification unit and is discharged out through the outlet. The gas detection module is plugged into or detached from the external socket. The controlling driving module is disposed within the main body and electrically connected to the gas guider to control the operation of the gas guider in an enabled state and a disabled state.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: April 2, 2024
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Yung-Lung Han, Chi-Feng Huang, Chang-Yen Tsai, Wei-Ming Lee, Tsung-I Lin
  • Patent number: 11944412
    Abstract: A blood pressure detection device manufactured by a semiconductor process includes a substrate, a microelectromechanical element, a gas-pressure-sensing element, a driving-chip element, an encapsulation layer and a valve layer. The substrate includes inlet apertures. The microelectromechanical element and the gas-pressure-sensing element are stacked and integrally formed on the substrate. The encapsulation layer is encapsulated and positioned on the substrate. A flowing-channel space is formed above the microelectromechanical element and the gas-pressure-sensing element. The encapsulation layer includes an outlet aperture in communication with an airbag. The driving-chip element controls the microelectromechanical element, the gas-pressure-sensing element and valve units to transport gas.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: April 2, 2024
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ying-Lun Chang, Ching-Sung Lin, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai, Wei-Ming Lee, Chun-Yi Kuo, Tsung-I Lin
  • Patent number: 11433551
    Abstract: A measurement system for positioning accuracy of a robotic arm includes the robotic arm, a computing device, a robotic arm controlling device, a first magnetic element and a second magnetic element. The robotic arm controlling device is electrically connected to the robotic arm and the computing device. The first magnetic element is disposed on a robotic arm. The second magnetic element is disposed on a fixed platform. One of the first magnetic element and the second magnetic element is electrically connected to the computing device. The robotic arm controlling device controls the robotic arm to move the first magnetic element above the second magnetic element to generate a magnetic field. The computing device is configured to calculate a plurality of movement error information of the first magnetic element in the magnetic field, and count the plurality of movement error information to obtain a positioning accuracy of the robot arm.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: September 6, 2022
    Assignee: INSTITUTE FOR INFORMATION INDUSTRY
    Inventor: Yung-I Huang
  • Publication number: 20210146551
    Abstract: A measurement system for positioning accuracy of a robotic arm includes the robotic arm, a computing device, a robotic arm controlling device, a first magnetic element and a second magnetic element. The robotic arm controlling device is electrically connected to the robotic arm and the computing device. The first magnetic element is disposed on a robotic arm. The second magnetic element is disposed on a fixed platform. One of the first magnetic element and the second magnetic element is electrically connected to the computing device. The robotic arm controlling device controls the robotic arm to move the first magnetic element above the second magnetic element to generate a magnetic field. The computing device is configured to calculate a plurality of movement error information of the first magnetic element in the magnetic field, and count the plurality of movement error information to obtain a positioning accuracy of the robot arm.
    Type: Application
    Filed: February 7, 2020
    Publication date: May 20, 2021
    Inventor: Yung-I Huang