Patents by Inventor Yung Neng Cheng

Yung Neng Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11349135
    Abstract: A method of preparation and application for a glass ceramic sealing thin strip with high sealing performance, differing from using conventional glass ceramic packaging paste applied to the junction of the cell stack assembly and connecting plates. The glass ceramic sealing thin strip of present invention utilizes tape casting to produce a single layer or multi-layer stacking in accordance with the required thickness of the glass-ceramic sealing thin strip, and cutting the glass ceramic sealing thin strips from molds in accordance with the geometry of cell stacks with equal thickness of the glass ceramic sealing thin strip for SOFC cell stack assembly, aiming to overcome the setbacks of the conventional dispensing method with glass ceramic packaging paste that makes the thickness difficult to control, and to effectively improve sealing performance of the cell stack assembly and the power generation efficiency, and achieve commercial application with mass production.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: May 31, 2022
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN
    Inventors: Tai-Nan Lin, Szu-Han Wu, Yi-Jing Wu, Min-Fang Han, Wei-Xin Kao, Hong-Yi Kuo, Chun-Yen Yeh, Yung-Neng Cheng, Ruey-Yi Lee
  • Publication number: 20220037682
    Abstract: A method of preparation and application for a glass ceramic sealing thin strip with high sealing performance, differing from using conventional glass ceramic packaging paste applied to the junction of the cell stack assembly and connecting plates. The glass ceramic sealing thin strip of present invention utilizes tape casting to produce a single layer or multi-layer stacking in accordance with the required thickness of the glass-ceramic sealing thin strip, and cutting the glass ceramic sealing thin strips from molds in accordance with the geometry of cell stacks with equal thickness of the glass ceramic sealing thin strip for SOFC cell stack assembly, aiming to overcome the setbacks of the conventional dispensing method with glass ceramic packaging paste that makes the thickness difficult to control, and to effectively improve sealing performance of the cell stack assembly and the power generation efficiency, and achieve commercial application with mass production.
    Type: Application
    Filed: August 3, 2020
    Publication date: February 3, 2022
    Inventors: TAI-NAN LIN, SZU-HAN WU, YI-JING WU, MIN-FANG HAN, WEI-XIN KAO, HONG-YI KUO, CHUN-YEN YEH, YUNG-NENG CHENG, RUEY-YI LEE
  • Patent number: 10218013
    Abstract: A flat plate type solid oxide fuel cell stack module is obtained by stacking a plurality of flat plate type solid oxide fuel cell stack units. Each of the cell stack unit comprises an anode plate, a cell unit and a cathode plate. The anode plate has a first flow channel, four corner first fuel input holes and a central first fuel output hole. The cathode plate has a second flow channel, a plurality of lateral second air input grooves and a plurality of lateral second air output grooves. The cell unit includes an anode layer, a cathode plate, four corner third fuel input holes and a central third fuel output hole. An anode mental net and an anode sealing material are disposed between the anode plate and the cell unit, a cathode mental net and a cathode sealing material are disposed between the cathode plate and the cell unit.
    Type: Grant
    Filed: January 2, 2015
    Date of Patent: February 26, 2019
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN
    Inventors: Hung-Hsiang Lin, Shih-Wei Cheng, Wen-Hsiu Chung, Szu-Han Wu, Yung-Neng Cheng, Ruey-Yi Lee
  • Publication number: 20190054576
    Abstract: A brazing material composition is provided, which may include Ge, Ag and Si, where the atomic percentage of Ge may be between 0<Ge?20 at %, the atomic percentage of Ag may be between 20?Ag<88 at %, and the atomic percentage of Si may be between 12<Si?60 at %. The thermo-physical properties of the brazing material composition can be easily adjusted; besides, the brazing material composition not only has low thermal expansion coefficient, but also has great structure stability and gas-tightness at elevated temperatures.
    Type: Application
    Filed: January 31, 2018
    Publication date: February 21, 2019
    Inventors: Liang-Wei Huang, Chien-Kuo Liu, Yung-Neng Cheng, Ruey-Yi Lee
  • Publication number: 20170335475
    Abstract: The present invention is to provide a solid oxide fuel cell test apparatus for a solid oxide electrolysis cell with a tubular evaporator furnished in the fuel delivery mechanism of the solid oxide fuel cell test apparatus being connected in serial to an external water supply, and the tubular evaporator having multilayer porous internal filler material may facilitate the inflow of water to be uniformly diffused and heated, providing a stable water vapor for introducing into the fuel cell with the fuel, mitigating adverse effects caused by pulse voltages to the fuel cell during high-temperature water electrolysis hydrogen test, so that more reliable test is achievable in order to obtain a solid oxide fuel cell with hydrogen generation from the water electrolysis.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 23, 2017
    Inventors: JING-KAI LIN, SHIH-WEI CHENG, SZU-HAN WU, WEI-HONG SHIU, HUNG-HSIANG LIN, TZENG-GUANG CHUNG, YUNG-NENG CHENG, RUEY-YI LEE
  • Publication number: 20170288240
    Abstract: A fuel cell power generation module includes a fuel cell stack body combined with a reformer, a burner, and a plate-type evaporator that are sequentially top-down stacked and assembled into a detachable power generation module, a gas-water separator to recycle mixed fuel that is not completely reacted with the fuel cell stack body, and a part of the recycled fuel is introduced into the burner for burning, and the burner thermal thus produced is used for heating the fuel cell stack body and the plate-type evaporator through thermal radiation and heat conduction, meanwhile, hot air produced by the burner can be used for heating air that enters the fuel cell stack body, and the plate-type evaporator converts the water into steam that feeds into the fuel cell stack body with fuel for reaction.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventors: SZU-HAN WU, Shih-Wei CHENG, Wei-Hong SHIU, Jing-Kai LIN, Hung-Hsiang LIN, Yung-Neng CHENG, Ruey-Yi LEE
  • Patent number: 9372035
    Abstract: The present invention is to provide a heat recovery storage device, which includes a major container, a heat transfer machine mounted in the major container, and a thermostatic valve mounted on the heat transfer machine. And the heat transfer machine is used for conducting heat transfer directly to the water in the major container, thus the efficiency of recovery increases, and loss of heat decreases. Also, the water is not easily boiled during the heat recovery, and the maximum of water temperature can increases. In extended use of more than one device of the present invention, each of the major containers can be installed with or without a heat transfer machine as required. The bypass outgassing control is not needed during the heat recovery, and is performed when the water temperature in the containers reaches to the highest.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: June 21, 2016
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Dung-Di Yu, Yung-Neng Cheng, Chia-Chih Yang
  • Publication number: 20160111738
    Abstract: A flat plate type solid oxide fuel cell stack module is obtained by stacking a plurality of flat plate type solid oxide fuel cell stack units. Each of the cell stack unit comprises an anode plate, a cell unit and a cathode plate. The anode plate has a first flow channel, four corner first fuel input holes and a central first fuel output hole. The cathode plate has a second flow channel, a plurality of lateral second air input grooves and a plurality of lateral second air output grooves. The cell unit includes an anode layer, a cathode plate, four corner third fuel input holes and a central third fuel output hole. An anode mental net and an anode sealing material are disposed between the anode plate and the cell unit, a cathode mental net and a cathode sealing material are disposed between the cathode plate and the cell unit.
    Type: Application
    Filed: January 2, 2015
    Publication date: April 21, 2016
    Inventors: HUNG-HSIANG LIN, SHIH-WEI CHENG, WEN- HSIU CHUNG, SZU-HAN WU, YUNG-NENG CHENG, RUEY-YI LEE
  • Publication number: 20150357664
    Abstract: A plate type fuel reformer of fuel cells includes a reformer module stacked by multiple sheet components, and an engaging surface formed on a surface of the reformer module and adhered to a surface of the default fuel cell module in order to form a great thermally-conductive combination. Detachable connections are formed between each of the sheet components and between the sheet components and the fuel cells module. The edge of the reformer module is non-protruding from the side of the fuel cell module after connection. Multiple containing spaces are respectively formed between each of the sheet components for containing default catalyst units. Also, an independent air channel is formed for guiding outside air to into the fuel cell module and a fuel channel is formed for containing the default catalyst units and guiding outside fuel to react with the catalyst units to generate hydrogen gas and carbon monoxide.
    Type: Application
    Filed: June 5, 2014
    Publication date: December 10, 2015
    Inventors: Szu-Han Wu, Shih-Wei Cheng, Hung-Hsiang Lin, Yung-Neng Cheng, Ruey-yi Lee
  • Publication number: 20150101777
    Abstract: The present invention is to provide a heat recovery storage device, which includes a major container, a heat transfer machine mounted in the major container, and a thermostatic valve mounted on the heat transfer machine. And the heat transfer machine is used for conducting heat transfer directly to the water in the major container, thus the efficiency of recovery increases, and loss of heat decreases. Also, the water is not easily boiled during the heat recovery, and the maximum of water temperature can increases. In extended use of more than one device of the present invention, each of the major containers can be installed with or without a heat transfer machine as required. The bypass outgassing control is not needed during the heat recovery, and is performed when the water temperature in the containers reaches to the highest.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Inventors: Dung-Di Yu, Yung-Neng Cheng, Chia-Chih Yang
  • Patent number: 8932738
    Abstract: A fuel cell assembly structure mainly comprises a housing in which there is an accommodating space; a plurality of unit cell stacks that are stacked in the same direction in the accommodating space of the housing and made by stacking in sequence a cathode layer, a power generation electrode, an anode layer and a connection disk; a connection disk connecting is series each unit cell stack, a sealing disk and a cover in sequence to cover the opening of the accommodating space of the housing. On the outer side of the cover there is a connection base, at least one surface of which has a plurality of conduits and the other end connects to a plurality of cell stack bypass manifolds that further connect to a plurality of side bypass manifolds.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: January 13, 2015
    Assignee: Institute of Nuclear Energy Research
    Inventors: Dung-Di Yu, Yung-Neng Cheng, Ruey-Yi Lee, Chien-Hsiung Lee
  • Patent number: 8928328
    Abstract: A testing device for solid oxide fuel cell (SOFC) is disclosed. The testing device which combines the original cell housing with a four-point probe equipment is set for measuring SOFC MEA. The current collectors on anode and cathode in the original cell housing are respectively replaced by four independent probe units. They are not only to collect current but also to become measuring probes. Therefore, the lateral impedance of anode and cathode can be measured. Furthermore, the local characteristics are examined by open circuit voltage (OCV), I-V curve, and electrochemical impedance spectroscopy (EIS) measurements. The results show that the lateral impedance is substantially varied with temperatures. The distributions of OCV, current density, EIS and cell voltage in long-term test at the center of the cell are different from the edge.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: January 6, 2015
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Shih-Wei Cheng, Yaw-Hwa Shiu, Yung-Neng Cheng, Ruey-Yi Lee
  • Patent number: 8883360
    Abstract: A burner reformer is provided for a power generating system using fuel cell. A burner is contained inside the reformer. The reformer absorbs heat from the burner and other heat source to reduce heat loss and save connecting wires. The present invention avoids flashing back of hydrogen. When fuel is lean, flame would not easily die and the system can thus work stably.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: November 11, 2014
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council
    Inventors: Wen-Tang Hong, Cheng-Nan Huang, Yu-Ching Tsai, Hsueh-I Tan, Shih-Kun Lo, Ming-Dar Lin, Chen-Po Lai, Yung-Neng Cheng, Ruey-Yi Lee
  • Patent number: 8486576
    Abstract: An in-line planar fuel cell height measurement system is mainly composed of a main stand, at least a top platform above a high temperature furnace, a displacement detection unit on the top platform with a central axis connecting to an extension rod that goes downward into the high temperature furnace and contacts the top surface of the cell stack inside the high temperature furnace, a displacement display unit connecting to the displacement detection unit through signal transmission cables, and a data processing unit connecting to the displacement display unit through signal transmission cables, so the displacement detection unit can sense the height change for the cell stack in the high temperature furnace during temperature rise and operation and send out a signal, which can be directly displayed by the displacement display unit and received by a data processing unit for further analysis and storage.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: July 16, 2013
    Assignee: Institute of Nuclear Energy Research
    Inventors: Yung-Neng Cheng, Ruey-Yi Lee, Hung-Hsiang Lin
  • Publication number: 20130101912
    Abstract: A burner reformer is provided for a power generating system using fuel cell. A burner is contained inside the reformer. The reformer absorbs heat from the burner and other heat source to reduce heat loss and save connecting wires. The present invention avoids flashing back of hydrogen. When fuel is lean, flame would not easily die and the system can thus work stably.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Wen-Tang Hong, Cheng-Nan Huang, Yu-Ching Tsai, Hsueh-I Tan, Shih-Kun Lo, Ming-Dar Lin, Chen-Po Lai, Yung-Neng Cheng, Ruey-Yi Lee
  • Patent number: 8427174
    Abstract: The present invention provides a measurement process for determination of the optimum contact pressure among components of a solid oxide fuel cell stack in the packaging process in order that the reduction in performance caused by the packaging process can be reduced. The present invention also provides a measurement apparatus which can carry the measurement process out.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: April 23, 2013
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Maw-Chwain Lee, Wei-Xin Kao, Tai-Nan Lin, Szu-Han Wu, Yung-Neng Cheng, Yang-Chuang Chang, Ruey-Yi Lee, Chun-Hsiu Wang
  • Publication number: 20130093456
    Abstract: A testing device for solid oxide fuel cell (SOFC) is disclosed. The testing device which combines the original cell housing with a four-point probe equipment is set for measuring SOFC MEA. The current collectors on anode and cathode in the original cell housing are respectively replaced by four independent probe units. They are not only to collect current but also to become measuring probes. Therefore, the lateral impedance of anode and cathode can be measured. Furthermore, the local characteristics are examined by open circuit voltage (OCV), I-V curve, and electrochemical impedance spectroscopy (EIS) measurements. The results show that the lateral impedance is substantially varied with temperatures. The distributions of OCV, current density, EIS and cell voltage in long-term test at the center of the cell are different from the edge.
    Type: Application
    Filed: January 18, 2012
    Publication date: April 18, 2013
    Applicant: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: SHIH-WEI CHENG, Yaw-Hwa Shiu, Yung-Neng Cheng, Ruey-Yi Lee
  • Patent number: 8399143
    Abstract: A solid oxide fuel cell (“SOFC”) stack device is disclosed. The SOFC stack includes SOFC units that can easily be stacked and electrically connected to one another. Furthermore, each of the SOFC units can easily be removed from the others and replaced with a new one. The fuel cell stack includes a supporting mechanism and two conducting and pressing units. The supporting mechanism includes three parts. Each part of the supporting mechanism includes slots defined therein for receiving the SOFC units. Each of the conducting and pressing units is located between two adjacent ones of the parts of the supporting mechanism.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: March 19, 2013
    Assignee: Atomic Energy Council—Institute of Nuclear Energy Research
    Inventors: Hung-Hsiang Lin, Ruey-Yi Lee, Yung-Neng Cheng
  • Patent number: 8251632
    Abstract: A system for transporting planar SOFC stack is disclosed, which comprises: a frame, for carrying a cell stack; a robotic arm, for grabbing and holding the cell stack; and a driver, coupled to the frame and the robotic arm and being used for driving the robotic arm. With the aforesaid system, the cell stack can be moved in and out of a high temperature furnace smoothly and rapidly, and then into a fuel cell control system, maintaining balance and stability of the cell stack.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: August 28, 2012
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Hunh-Hsiang Lin, Ruey-Yi Lee, Yung-Neng Cheng
  • Patent number: 8250929
    Abstract: A load device for planar solid oxide fuel cell stack comprises: a balance plate, a high-temperature compressed column, a load cell, an elastic member, an equalizing ring, and an actuator. The balance plate is disposed abutted against the fuel cell stack, and the high-temperature compressed column is disposed on the balance plate, and the load cell and the elastic member are arranged at a top portion of the high-temperature compressed column. The actuator, being placed on the equalizing ring, is used for providing a load to the equalizing ring, the load cell, the elastic member and the high-temperature compressed column Thereby, the load exerted by the actuator can be detected from the measurement of the load cell while the relationship between the load variation and performance of the SOFC stack can be read directly or transmitted to an external device for display.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: August 28, 2012
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Hung-Hsiang Lin, Ruey-Yi Lee, Yung-Neng Cheng