Patents by Inventor Yunlong Zhao

Yunlong Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250076310
    Abstract: The present invention generally pertains to methods for characterizing the fragment crystallizable (Fc) region of a bispecific antibody (bsAb) using Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS).
    Type: Application
    Filed: December 4, 2023
    Publication date: March 6, 2025
    Inventors: Hui Xiao, Bo Zhao, Yunlong Zhao, Ning Li
  • Publication number: 20250067750
    Abstract: The present invention generally pertains to methods of characterizing non-consensus glycosylation sites of a protein. In particular, the present invention pertains to the use of high-throughput automated processes through digestion, enrichment of glycopeptides by liquid chromatography-mass spectrometry for identifying identification of non-consensus glycosylation sites.
    Type: Application
    Filed: July 29, 2024
    Publication date: February 27, 2025
    Inventors: Abu Nahiyaan Navid, Yunlong Zhao, Yuan Mao, Ning Li
  • Publication number: 20240353417
    Abstract: This application relates to methods for identifying a glycosylated peptide biomarker in a sample. In particular, the application relates to methods for identifying an N-glycan profile of a protein in a sample.
    Type: Application
    Filed: January 17, 2024
    Publication date: October 24, 2024
    Inventors: Yunlong Zhao, Shivkumar Raidas, Yuan Mao, Ning Li
  • Publication number: 20230417759
    Abstract: A method of enhancing a mass spectral signal is disclosed. The method can include contacting a sample to a separation column under conditions that permit sample components to bind to the substrate; applying a first mobile gradient to the separation column, wherein the first mobile phase gradient comprises trifluoroacetic acid (TFA) and a small molecule additive (e.g., an amino acid) or formic acid (FA) and a small molecule additive (e.g., an amino acid); applying a second mobile gradient to the separation column, wherein the second mobile phase gradient comprises TFA in acetonitrile (ACN) and a small molecule additive (e.g., an amino acid) or formic acid (FA) in ACN and a small molecule additive (e.g., an amino acid); and performing mass spectrometric analysis on eluted sample components.
    Type: Application
    Filed: May 31, 2023
    Publication date: December 28, 2023
    Inventors: Yuan Mao, Andrew Kleinberg, Yunlong Zhao, Lili Guo
  • Publication number: 20230051753
    Abstract: A solar cell superfine electrode transfer thin film is described. The electrode transfer thin film sequentially includes from bottom to top a substrate, a release layer, a resin layer and a hot melt adhesive layer; the resin layer is formed with electrode trenches therein; the electrode trenches are formed with electrodes therein; superfine conductive electrodes are continuously prepared on a transparent thin film via a roll-to-roll nanoimprinting method, the width of an electrode wire being 2 ?m-50 ?m, and the width of a typical line being 10 ?m-30 ?m. Directly attach the superfine electrodes of the hot melt adhesive layer to a solar cell by peeling off the substrate material, and sintering at a high temperature to volatilize the hot melt adhesive layer material while retaining the electrodes, thus the electrodes are integrally transferred, without poor local transfer.
    Type: Application
    Filed: October 18, 2022
    Publication date: February 16, 2023
    Inventors: Xiaohong Zhou, Zongbao Fang, Linsen Chen, Pengfei Zhu, Donglin Pu, Ximei Yin, Yunlong Zhao
  • Patent number: 11476373
    Abstract: Provided are a solar cell superfine electrode transfer thin film, manufacturing method and application method thereof. The electrode transfer thin film sequentially includes from bottom to top a substrate, a release layer, a resin layer and a hot melt adhesive layer; the resin layer is formed with electrode trenches therein; the electrode trenches are formed with electrodes therein; superfine conductive electrodes are continuously prepared on a transparent thin film via a roll-to-roll nanoimprinting method, the width of an electrode wire being 2 ?m-50 ?m, and the width of a typical line being 10 ?m-30 ?m. Directly attach the superfine electrodes of the hot melt adhesive layer to a solar cell by peeling off the substrate material, and sintering at a high temperature to volatilize the hot melt adhesive layer material while retaining the electrodes, thus the electrodes are integrally transferred, without poor local transfer.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: October 18, 2022
    Assignee: SVG OPTRONICS CO., LTD.
    Inventors: Xiaohong Zhou, Zongbao Fang, Linsen Chen, Pengfei Zhu, Donglin Pu, Ximei Yin, Yunlong Zhao
  • Publication number: 20210223259
    Abstract: A method of enhancing a mass spectral signal is disclosed. The method can include contacting a sample to a separation column under conditions that permit sample components to bind to the substrate; applying a first mobile gradient to the separation column, wherein the first mobile phase gradient comprises trifluoroacetic acid (TFA) and a small molecule additive (e.g., an amino acid) or formic acid (FA) and a small molecule additive (e.g., an amino acid); applying a second mobile gradient to the separation column, wherein the second mobile phase gradient comprises TFA in acetonitrile (ACN) and a small molecule additive (e.g., an amino acid) or formic acid (FA) in ACN and a small molecule additive (e.g., an amino acid); and performing mass spectrometric analysis on eluted sample components.
    Type: Application
    Filed: January 7, 2021
    Publication date: July 22, 2021
    Inventors: Yuan Mao, Andrew Kleinberg, Yunlong Zhao, Lili Guo
  • Publication number: 20170054043
    Abstract: Provided are a solar cell superfine electrode transfer thin film, manufacturing method and application method thereof. The electrode transfer thin film sequentially includes from bottom to top a substrate, a release layer, a resin layer and a hot melt adhesive layer; the resin layer is formed with electrode trenches therein; the electrode trenches are formed with electrodes therein; superfine conductive electrodes are continuously prepared on a transparent thin film via a roll-to-roll nanoimprinting method, the width of an electrode wire being 2 ?m-50 ?m, and the width of a typical line being 10 ?m-30 ?m. Directly attach the superfine electrodes of the hot melt adhesive layer to a solar cell by peeling off the substrate material, and sintering at a high temperature to volatilize the hot melt adhesive layer material while retaining the electrodes, thus the electrodes are integrally transferred, without poor local transfer.
    Type: Application
    Filed: March 30, 2015
    Publication date: February 23, 2017
    Inventors: Xiaohong Zhou, Zongbao Fang, Linsen Chen, Pengfei Zhu, Donglin Pu, Ximei Yin, Yunlong Zhao