Patents by Inventor Yunpeng Ding

Yunpeng Ding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11773027
    Abstract: A preparation method and a product of a metal-matrix composite reinforced by nanoscale carbon materials are provided, including: plating metal layers on surfaces of the nanoscale carbon materials, and then adding mental particles to perform ball milling for dispersion and sintering. Volumes of the nanoscale carbon materials account for 0.01% to 30% of the metal-matrix composite. Size requirements of the nanoscale carbon materials and the metal particles are that: K×a sum of maximum cross-sectional areas of the nanoscale carbon materials in a unit volume?a sum of surface areas of the mental particles in the unit volume; and the K represent a space compensation coefficient. The method is practical and effective, and the nanoscale carbon materials are efficiently and uniformly dispersed in metallic matrix. The obtained composite further has excellent mechanical, electrical and thermal properties, and is applied in metal-matrix composites, nano-electronic components, and biosensors.
    Type: Grant
    Filed: March 14, 2023
    Date of Patent: October 3, 2023
    Assignee: ZHENGZHOU UNIVERSITY OF AERONAUTICS
    Inventors: Yunpeng Ding, Zhiyuan Li, Yizhuang Zhang, Haoju Jiang, Wei Zhai
  • Publication number: 20230295052
    Abstract: A preparation method and a product of a metal-matrix composite reinforced by nanoscale carbon materials are provided, including: plating metal layers on surfaces of the nanoscale carbon materials, and then adding mental particles to perform ball milling for dispersion and sintering. Volumes of the nanoscale carbon materials account for 0.01% to 30% of the metal-matrix composite. Size requirements of the nanoscale carbon materials and the metal particles are that: K×a sum of maximum cross-sectional areas of the nanoscale carbon materials in a unit volume ? a sum of surface areas of the mental particles in the unit volume; and the K represent a space compensation coefficient. The method is practical and effective, and the nanoscale carbon materials are efficiently and uniformly dispersed in metallic matrix. The obtained composite further has excellent mechanical, electrical and thermal properties, and is applied in metal-matrix composites, nano-electronic components, and bio sensors.
    Type: Application
    Filed: March 14, 2023
    Publication date: September 21, 2023
    Inventors: Yunpeng Ding, Zhiyuan Li, Yizhuang Zhang, Haoju Jiang, Wei Zhai