Patents by Inventor Yunping Luo

Yunping Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10335420
    Abstract: An aqueous tumor-targeting liposome nanoparticle composition comprises an aqueous dispersion of liposome nanoparticles. The nanoparticles preferably encapsulate an anti-cancer chemotherapeutic agent, which can be added to a pre-formed liposome composition or can be incorporated in the liposomes during the formation of the liposomes. The liposome nanoparticles comprise a legumain-targeting lipid admixed with one or more other micelle or vesicle-forming lipid materials in the form of nanoparticulate liposomes dispersed in an aqueous carrier. A preferred tumor-targeting liposome nanoparticle composition comprises a legumain-targeting lipid component and polyethylene glycol-conjugated lipid component. The legumain-targeting lipid component comprising a hydrophobic lipid portion covalently attached to a legumain-binding moiety.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: July 2, 2019
    Assignee: The Scripps Research Institute
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo, Debbie Liao, Ze Liu, Tingmei Chen, Si Chen, Dan Lu
  • Publication number: 20170224838
    Abstract: An aqueous tumor-targeting liposome nanoparticle composition comprises an aqueous dispersion of liposome nanoparticles. The nanoparticles preferably encapsulate an anti-cancer chemotherapeutic agent, which can be added to a pre-formed liposome composition or can be incorporated in the liposomes during the formation of the liposomes. The liposome nanoparticles comprise a legumain-targeting lipid admixed with one or more other micelle or vesicle-forming lipid materials in the form of nanoparticulate liposomes dispersed in an aqueous carrier. A preferred tumor-targeting liposome nanoparticle composition comprises a legumain-targeting lipid component and polyethylene glycol-conjugated lipid component. The legumain-targeting lipid component comprising a hydrophobic lipid portion covalently attached to a legumain-binding moiety.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Applicant: The Scripps Research Institute
    Inventors: Ralph A. REISFELD, Rong XIANG, Yunping LUO, Debbie LIAO, Ze LIU, Tingmei CHEN, Si CHEN, Dan LU
  • Patent number: 9629922
    Abstract: The present invention provides an aqueous tumor-targeting liposome nanoparticle composition comprising an aqueous dispersion of liposome nanoparticles. The nanoparticles preferably encapsulate an anti-cancer chemotherapeutic agent, which can be added to a pre-formed liposome composition or can be incorporated in the liposomes during the formation of the liposomes. The liposome nanoparticles comprise a legumain-targeting lipid admixed with one or more other micelle or vesicle-forming lipid materials in the form of nanoparticulate liposomes dispersed in an aqueous carrier. A preferred tumor-targeting liposome nanoparticle composition comprises (a) a legumain-targeting lipid component, (b) a zwitterionic lipid component; (c) an amino-substituted lipid component; (d) a neutral lipid component; and (e) polyethylene glycol-conjugated lipid component. The legumain-targeting lipid component comprising a hydrophobic lipid portion covalenetly attached to a legumain-binding moiety.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: April 25, 2017
    Assignee: The Scripps Research Institute
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo, Debbie Liao, Ze Liu, Tingmei Chen, Si Chen, Dan Lu
  • Patent number: 9616137
    Abstract: The present invention provides an aqueous tumor-targeting liposome nanoparticle composition comprising an aqueous dispersion of liposome nanoparticles. The nanoparticles preferably encapsulate an anti-cancer chemotherapeutic agent, which can be added to a pre-formed liposome composition or can be incorporated in the liposomes during the formation of the liposomes. The liposome nanoparticles comprise a legumain-targeting lipid admixed with one or more other micelle or vesicle-forming lipid materials in the form of nanoparticulate liposomes dispersed in an aqueous carrier. A preferred tumor-targeting liposome nanoparticle composition comprises (a) a legumain-targeting lipid component, (b) a zwitterionic lipid component; (c) an amino-substituted lipid component; (d) a neutral lipid component; and (e) polyethylene glycol-conjugated lipid component. The legumain-targeting lipid component comprising a hydrophobic lipid portion covalently attached to a legumain-binding moiety.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: April 11, 2017
    Assignee: The Scripps Research Institute
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo, Debbie Liao, Ze Liu, Tingmei Chen, Si Chen, Dan Lu
  • Publication number: 20150175996
    Abstract: The present invention provides a DNA composition comprising a DNA minigene construct that encodes for a polypeptide comprising a plurality of immunogenic fragments of a cysteine endopeptidase that is expressed in tumor-associated cells. The immunogenic fragments are joined together serially by a linker peptide between each successive fragment in the polypeptide. The polypeptide is capable of eliciting an immune response against the tumor-associated cells, is expressible in immune cells, and is incorporated in a pharmaceutically acceptable carrier.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 25, 2015
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo, Susanna Lewen
  • Publication number: 20130330399
    Abstract: The present invention provides an aqueous tumor-targeting liposome nanoparticle composition comprising an aqueous dispersion of liposome nanoparticles. The nanoparticles preferably encapsulate an anti-cancer chemotherapeutic agent, which can be added to a pre-formed liposome composition or can be incorporated in the liposomes during the formation of the liposomes. The liposome nanoparticles comprise a legumain-targeting lipid admixed with one or more other micelle or vesicle-forming lipid materials in the form of nanoparticulate liposomes dispersed in an aqueous carrier. A preferred tumor-targeting liposome nanoparticle composition comprises (a) a legumain-targeting lipid component, (b) a zwitterionic lipid component; (c) an amino-substituted lipid component; (d) a neutral lipid component; and (e) polyethylene glycol-conjugated lipid component. The legumain-targeting lipid component comprising a hydrophobic lipid portion covalenetly attached to a legumain-binding moiety.
    Type: Application
    Filed: September 2, 2011
    Publication date: December 12, 2013
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo, Debbie Liao, Ze Liu, Tingmei Chen, Si Chen, Dan Lu
  • Publication number: 20120058177
    Abstract: The present invention provides an aqueous tumor-targeting liposome nanoparticle composition comprising an aqueous dispersion of liposome nanoparticles. The nanoparticles preferably encapsulate an anti-cancer chemotherapeutic agent, which can be added to a pre-formed liposome composition or can be incorporated in the liposomes during the formation of the liposomes. The liposome nanoparticles comprise a legumain-targeting lipid admixed with one or more other micelle or vesicle-forming lipid materials in the form of nanoparticulate liposomes dispersed in an aqueous carrier. A preferred tumor-targeting liposome nanoparticle composition comprises (a) a legumain-targeting lipid component, (b) a zwitterionic lipid component; (c) an amino-substituted lipid component; (d) a neutral lipid component; and (e) polyethylene glycol-conjugated lipid component. The legumain-targeting lipid component comprising a hydrophobic lipid portion covalenetly attached to a legumain-binding moiety.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 8, 2012
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo, Debbie Liao, Ze Liu, Tingmei Chen, Si Chen, Dan Lu
  • Patent number: 8053421
    Abstract: A DNA vaccine suitable for eliciting an immune response against cancer cells comprises a polynucleotide construct operably encoding an a Fra-1 protein, such as a polyubiquitinated human Fra-1 protein, and IL-18, such as human IL-18, in a pharmaceutically acceptable carrier. In a preferred embodiment, the polynucleotide construct is operably incorporated in an attenuated bacterial vector, such as an attenuated Salmonella typhimurium, particularly a doubly attenuated aroA? dam? S. typhimurium. Transformed host cells, methods of inhibiting tumor growth, of vaccinating a patient against cancer, and of delivering genetic material to a mammalian cell in vivo are also described.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: November 8, 2011
    Assignee: The Scripps Research Institute
    Inventors: Yunping Luo, Rong Xiang, Ralph A. Reisfeld
  • Publication number: 20100136058
    Abstract: A DNA vaccine suitable for eliciting an immune response against cancer cells comprises a polynucleotide construct operably encoding an a Fra-1 protein, such as a polyubiquitinated human Fra-1 protein, and IL-18, such as human IL-18, in a pharmaceutically acceptable carrier. In a preferred embodiment, the polynucleotide construct is operably incorporated in an attenuated bacterial vector, such as an attenuated Salmonella typhimurium, particularly a doubly attenuated aroA- dam- S. typhimurium. Transformed host cells, methods of inhibiting tumor growth, of vaccinating a patient against cancer, and of delivering genetic material to a mammalian cell in vivo are also described.
    Type: Application
    Filed: August 4, 2009
    Publication date: June 3, 2010
    Inventors: Yunping Luo, Rong Xiang, Ralph A. Reisfeld
  • Publication number: 20090275642
    Abstract: The present invention provides a DNA composition comprising a DNA minigene construct that encodes for a polypeptide comprising a plurality of immunogenic fragments of a cysteine endopeptidase that is expressed in tumor-associated cells. The immunogenic fragments are joined together serially by a linker peptide between each successive fragment in the polypeptide. The polypeptide is capable of eliciting an immune response against the tumor-associated cells, is expressible in immune cells, and is incorporated in a pharmaceutically acceptable carrier.
    Type: Application
    Filed: October 5, 2007
    Publication date: November 5, 2009
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo
  • Patent number: 7569552
    Abstract: A DNA vaccine suitable for eliciting an immune response against cancer cells comprises a polynucleotide construct operably encoding an a Fra-1 protein, such as a polyubiquitinated human Fra-1 protein, and IL-18, such as human IL-18, in a pharmaceutically acceptable carrier. In a preferred embodiment, the polynucleotide construct is operably incorporated in an attenuated bacterial vector, such as an attenuated Salmonella typhimurium, particularly a doubly attenuated aroA? dam? S. typhimurium. Transformed host cells, methods of inhibiting tumor growth, of vaccinating a patient against cancer, and of delivering genetic material to a mammalian cell in vivo are also described.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: August 4, 2009
    Assignee: The Scripps Research Institute
    Inventors: Yunping Luo, Rong Xiang, Ralph A. Reisfeld
  • Publication number: 20070110717
    Abstract: A DNA vaccine suitable for eliciting an immune response against cancer cells comprises a polynucleotide construct operably encoding an a Fra-1 protein, such as a polyubiquitinated human Fra-1 protein, and IL-18, such as human IL-18, in a pharmaceutically acceptable carrier. In a preferred embodiment, the polynucleotide construct is operably incorporated in an attenuated bacterial vector, such as an attenuated Salmonella typhimurium, particularly a doubly attenuated aroA- dam- S. typhimurium. Transformed host cells, methods of inhibiting tumor growth, of vaccinating a patient against cancer, and of delivering genetic material to a mammalian cell in vivo are also described.
    Type: Application
    Filed: October 7, 2004
    Publication date: May 17, 2007
    Inventors: Yunping Luo, Rong Xiang, Ralph Reisfeld