Patents by Inventor Yunrui Wang

Yunrui Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11193689
    Abstract: A predictive heating system for a building zone includes building equipment, a temperature sensor, a humidity sensor, and a predictive heating controller. The building equipment is operable to affect an environmental condition of the building zone in a heating mode of operation and a cooling mode of operation. The temperature sensor is configured to measure a temperature of the building zone. The humidity sensor is configured to measure humidify of the building zone. The predictive heating controller is configured to predict an occupancy time of the building zone over a future time period, determine a dehumidification time period before the occupancy time of the building zone, determine a heating time period before the occupancy time of the building zone, operate the building equipment to dehumidify the building zone over the dehumidification time period, and operate the building equipment to heat the building zone over the heating time period.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: December 7, 2021
    Assignee: Johnson Controls Tyco IP Holdings LLP
    Inventors: Robert D. Turney, Liming Yang, Yunrui Wang
  • Patent number: 10895393
    Abstract: A variable refrigerant flow (VRF) system for a building includes a plurality of outdoor VRF units configured to heat or cool a refrigerant for use in heating or cooling the building and an extremum-seeking controller. The extremum-seeking controller is configured to determine a total power consumption of the plurality of outdoor VRF units, generate a pressure setpoint for the plurality of outdoor VRF units using an extremum-seeking control technique that drives the total power consumption toward an extremum, and use the pressure setpoint to operate the plurality of outdoor VRF units.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: January 19, 2021
    Assignee: Johnson Controls Technology Company
    Inventors: Robert D. Turney, Liming Yang, Yunrui Wang, Yasutaka Yoshida, Kazumoto Urata, Timothy I. Salsbury, John M. House
  • Publication number: 20200393157
    Abstract: A predictive heating system for a building zone includes building equipment, a temperature sensor, a humidity sensor, and a predictive heating controller. The building equipment is operable to affect an environmental condition of the building zone in a heating mode of operation and a cooling mode of operation. The temperature sensor is configured to measure a temperature of the building zone. The humidity sensor is configured to measure humidify of the building zone. The predictive heating controller is configured to predict an occupancy time of the building zone over a future time period, determine a dehumidification time period before the occupancy time of the building zone, determine a heating time period before the occupancy time of the building zone, operate the building equipment to dehumidify the building zone over the dehumidification time period, and operate the building equipment to heat the building zone over the heating time period.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 17, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: Robert D. Turney, Liming Yang, Yunrui Wang
  • Patent number: 10655878
    Abstract: A variable refrigerant flow (VRF) system for a building. The VRF system includes at least one outdoor VRF unit configured to heat or cool a refrigerant for use in heating or cooling the building. The at least one outdoor VRF unit includes a sub-cooler and a bypass expansion valve configured to control a flow of the refrigerant through the sub-cooler and an extremum-seeking controller configured to generate a sub-cooling temperature setpoint for the at least one outdoor VRF unit. The extremum-seeking controller is configured to determine a total power consumption of the at least one outdoor VRF unit, generate a sub-cooling temperature setpoint for the at least one outdoor VRF unit using an extremum-seeking control technique that drives the total power consumption toward an extremum, and use the sub-cooling temperature setpoint to operate the at least one outdoor VRF unit.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: May 19, 2020
    Assignee: Johnson Controls Technology Company
    Inventors: Robert D. Turney, Liming Yang, Yunrui Wang, Yasutaka Yoshida, Kazumoto Urata
  • Publication number: 20200011562
    Abstract: A variable refrigerant flow (VRF) system for a building. The VRF system includes at least one outdoor VRF unit configured to heat or cool a refrigerant for use in heating or cooling the building. The at least one outdoor VRF unit includes a sub-cooler and a bypass expansion valve configured to control a flow of the refrigerant through the sub-cooler and an extremum-seeking controller configured to generate a sub-cooling temperature setpoint for the at least one outdoor VRF unit. The extremum-seeking controller is configured to determine a total power consumption of the at least one outdoor VRF unit, generate a sub-cooling temperature setpoint for the at least one outdoor VRF unit using an extremum-seeking control technique that drives the total power consumption toward an extremum, and use the sub-cooling temperature setpoint to operate the at least one outdoor VRF unit.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: Robert D. Turney, Liming Yang, Yunrui Wang, Yasutaka Yoshida, Kazumoto Urata
  • Publication number: 20200011561
    Abstract: A variable refrigerant flow (VRF) system for a building includes a plurality of outdoor VRF units configured to heat or cool a refrigerant for use in heating or cooling the building and an extremum-seeking controller. The extremum-seeking controller is configured to determine a total power consumption of the plurality of outdoor VRF units, generate a pressure setpoint for the plurality of outdoor VRF units using an extremum-seeking control technique that drives the total power consumption toward an extremum, and use the pressure setpoint to operate the plurality of outdoor VRF units.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Inventors: Robert D. Turney, Liming Yang, Yunrui Wang, Yasutaka Yoshida, Kazumoto Urata, Timothy I. Salsbury, John M. House