Patents by Inventor Yunsheng Wen

Yunsheng Wen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160134079
    Abstract: A wavelength alignment method includes: emitting a first optical signal by using a laser; filtering the first optical signal by using a filter, and then transmitting a second optical signal; monitoring an extinction ratio of the second optical signal and an optical power of the second optical signal; and adjusting a working temperature of the laser and/or a working temperature of the filter to a target working temperature when the extinction ratio of the second optical signal exceeds an upper limit of a first extinction ratio threshold range and the optical power of the second optical signal exceeds a lower limit of a first optical power threshold range or when the extinction ratio of the second optical signal exceeds a lower limit of a first extinction ratio threshold range and the optical power of the second optical signal exceeds an upper limit of a first optical power threshold range.
    Type: Application
    Filed: January 14, 2016
    Publication date: May 12, 2016
    Inventors: Zhenxing LIAO, Ning CHENG, Min ZHOU, Jing HUANG, Yunsheng WEN
  • Patent number: 9042689
    Abstract: An optical switch includes: a semiconductor substrate, including a first rotation part and a first torsion beam disposed at two ends of the first rotation part, where the first torsion beam is configured to drive the first rotation part to rotate; a microreflector, disposed on a surface of the first rotation part of the semiconductor substrate; a first latching structure, disposed on a surface of the first torsion beam, the first latching structure including a form self remolding (FSR) material layer and a thermal field source, where the thermal field source is configured to provide a thermal field for the FSR material layer and the FSR material layer is configured to undergo form remolding under the thermal field, so as to latch the first rotation part and the microreflector in a position after rotation.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: May 26, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Qinghua Chen, Haixia Zhang, Wengang Wu, Jun Zhao, Yunsheng Wen
  • Patent number: 8965200
    Abstract: A method, an apparatus and a system for detecting a connection status of an optical fiber jumper are provided in the embodiments of the present invention. The method for detecting a connection status of an optical fiber jumper includes: judging a connection status of a second port and a first port according to whether an optical signal sent by the first port to the second port through a first optical fiber is received, wherein the first optical fiber is connected to two ends of an optical fiber jumper, and the two ends of the optical fiber jumper are connected to the first port and the second port respectively; and obtaining a port identification corresponding to the first port according to the optical signal if the optical signal is received.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: February 24, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yunsheng Wen, Jun Zhao, Bo Wang, Xiaolei Shan
  • Patent number: 8917987
    Abstract: A method for detecting branch fibers is provided, which includes: sending test signals to a plurality of branch fibers, where the test signals are added at ports of the optical splitting module with identification information for identifying branch fibers connected to the ports and receiving a reflection signal added with the identification information of a detected branch fiber, identifying the detected branch fiber corresponding to the reflection signal through detecting the identification information added to the reflection information, and obtaining channel characteristics of the detected branch fiber according to the reflection signal. Further, a system and an apparatus for detecting branch fibers are provided.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: December 23, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yunsheng Wen, Jun Zhao, Shijun Wang, Xiaolei Shan, Bo Wang
  • Patent number: 8891915
    Abstract: An optical switch system and the system includes a semi-transmissive semi-reflective module is configured to intercept, in a transmission manner, test light that is the same as the signal light with respect to the propagation path and output after being modulated by the optical output control module; the imaging module is configured to acquire the test light, generate corresponding initial optical path information and sampled optical path information in sequence, and transfer the initial optical path information and the sampled optical path information to the judging module in sequence; the judging module is configured to record the initial optical path information, and compare the sampled optical path information with the initial optical path information; and the control module is configured to control the optical output control module according to a comparison result.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: November 18, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Shijun Wang, Yunsheng Wen, Jun Zhao
  • Patent number: 8660392
    Abstract: Embodiments of the present disclosure disclose an optical cable and an optical cable system, where the optical cable includes an SZ-shaped optical cable skeleton and a plurality of optical fiber units. Skeleton slots is recessed in a periphery of the optical cable skeleton, and the plurality of optical fiber units is grouped and respectively disposed in the corresponding skeleton slots, thereby having the advantages of being easy to strip and draw, high reliability, and long lifetime. Moreover, the optical fiber does not need to be connected when being diverged on floors during installation, thereby reducing the fusion splicing/termination connection time, simplifying the optical cable wiring, greatly reducing deployment cost of an Optical Distribution Network (ODN), and speeding up the scale deployment of the FTTX ODN; in addition, interference among the optical fibers is avoided when the optical fibers are drawn, thereby increasing reliability of the optical fibers after installation.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: February 25, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wenxin Wu, De Li, Jun Zhao, Yunsheng Wen, Yanhua Xiong
  • Publication number: 20130343758
    Abstract: The present invention provides a WDM which includes three ports, the three ports each include an optical fiber array and a micro lens array matching the optical fiber array; an optical signal is transmitted to a filter after passing through a corresponding micro lens in a first micro lens array of the common port; transmitted light of the optical signal enters a corresponding micro lens in a second micro lens array of the pass port after passing through the filter, and then the light is output by a corresponding optical fiber in a second optical fiber array of the pass port; reflected light of the optical signal enters a corresponding micro lens in a third micro lens array of the reflection port after being reflected by the filter, and the light is output by a corresponding optical fiber in a third optical fiber array of the reflection port.
    Type: Application
    Filed: August 21, 2013
    Publication date: December 26, 2013
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Shijun WANG, Yunsheng WEN, Xueshan ZHAO
  • Publication number: 20130336615
    Abstract: An optical switch system and the system includes a semi-transmissive semi-reflective module is configured to intercept, in a transmission manner, test light that is the same as the signal light with respect to the propagation path and output after being modulated by the optical output control module; the imaging module is configured to acquire the test light, generate corresponding initial optical path information and sampled optical path information in sequence, and transfer the initial optical path information and the sampled optical path information to the judging module in sequence; the judging module is configured to record the initial optical path information, and compare the sampled optical path information with the initial optical path information; and the control module is configured to control the optical output control module according to a comparison result.
    Type: Application
    Filed: August 21, 2013
    Publication date: December 19, 2013
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Shijun WANG, Yunsheng Wen, Jun Zhao
  • Publication number: 20130243372
    Abstract: An optical switch includes: a semiconductor substrate, including a first rotation part and a first torsion beam disposed at two ends of the first rotation part, where the first torsion beam is configured to drive the first rotation part to rotate; a microreflector, disposed on a surface of the first rotation part of the semiconductor substrate; a first latching structure, disposed on a surface of the first torsion beam, the first latching structure including a form self remolding (FSR) material layer and a thermal field source, where the thermal field source is configured to provide a thermal field for the FSR material layer and the FSR material layer is configured to undergo form remolding under the thermal field, so as to latch the first rotation part and the microreflector in a position after rotation.
    Type: Application
    Filed: September 4, 2012
    Publication date: September 19, 2013
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Qinghua Chen, Haixia Zhang, Wengang Wu, Jun Zhao, Yunsheng Wen
  • Publication number: 20120263458
    Abstract: A method for detecting branch fibers is provided, which includes: sending test signals to a plurality of branch fibers, where the test signals are added at ports of the optical splitting module with identification information for identifying branch fibers connected to the ports; and receiving a reflection signal added with the identification information of a detected branch fiber, identifying the detected branch fiber corresponding to the reflection signal through detecting the identification information added to the reflection information, and obtaining channel characteristics of the detected branch fiber according to the reflection signal. Further, a system and an apparatus for detecting branch fibers are provided.
    Type: Application
    Filed: June 21, 2012
    Publication date: October 18, 2012
    Inventors: Yunsheng Wen, Jun Zhao, Shijun Wang, Xiaolei Shan, Bo Wang
  • Publication number: 20120063767
    Abstract: A method, an apparatus and a system for detecting a connection status of an optical fiber jumper are provided in the embodiments of the present invention. The method for detecting a connection status of an optical fiber jumper includes: judging a connection status of a second port and a first port according to whether an optical signal sent by the first port to the second port through a first optical fiber is received, wherein the first optical fiber is connected to two ends of an optical fiber jumper, and the two ends of the optical fiber jumper are connected to the first port and the second port respectively; and obtaining a port identification corresponding to the first port according to the optical signal if the optical signal is received.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 15, 2012
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Yunsheng Wen, Jun Zhao, Bo Wang, Xiaolei Shan
  • Publication number: 20120063732
    Abstract: Embodiments of the present disclosure disclose an optical cable and an optical cable system, where the optical cable includes an SZ-shaped optical cable skeleton and a plurality of optical fiber units. Skeleton slots is recessed in a periphery of the optical cable skeleton, and the plurality of optical fiber units is grouped and respectively disposed in the corresponding skeleton slots, thereby having the advantages of being easy to strip and draw, high reliability, and long lifetime. Moreover, the optical fiber does not need to be connected when being diverged on floors during installation, thereby reducing the fusion splicing/termination connection time, simplifying the optical cable wiring, greatly reducing deployment cost of an Optical Distribution Network (ODN), and speeding up the scale deployment of the FTTX ODN; in addition, interference among the optical fibers is avoided when the optical fibers are drawn, thereby increasing reliability of the optical fibers after installation.
    Type: Application
    Filed: November 18, 2011
    Publication date: March 15, 2012
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Wenxin Wu, De Li, Jun Zhao, Yunsheng Wen, Yanhua Xiong