Patents by Inventor Yunzhang Wang
Yunzhang Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20100189963Abstract: A multi-layered fiber containing a core and a skin layer. The core has an exterior surface portion containing polypropylene. The skin layer is disposed on at least a portion of the core and contains a first polymer and a second polymer. The first polymer contains a polymer having at least 70% ?-olefin units and is characterized by a melting temperature lower than the melting temperature of the exterior surface portion of the core. The second polymer contains a co-polymer having at least 50% ?-olefin units and is characterized by a number-average molecular weight of about 7,000 g/mol to 50,000 g/mol, a viscosity of between about 2,500 and 150,000 cP measured at 170° C., and a melting temperature lower than the melting temperature of the exterior surface portion of the core. The viscosity of the second polymer is not greater than about 10 percent of the viscosity of the first polymer measured at 170° C. Methods of forming the multi-layered fiber are also disclosed.Type: ApplicationFiled: January 27, 2009Publication date: July 29, 2010Inventors: Sujith Nair, Sasha Stankovich, Yunzhang Wang, Venkatkrishna Raghavendran
-
Publication number: 20090311930Abstract: A flexible knife resistant composite incorporating a stack of at least five knife resistant textile layers, where each knife resistant textile layer comprises monoaxially drawn tape elements. The tape elements contain a base layer strain oriented olefin polymer with at least one covering layer of a heat fusible olefin polymer on the base layer and the covering layer is characterized by a softening temperature below that of the base layer. The tape elements within each layer are consolidated to one another by the covering layer and the tape elements of one layer are not consolidated to the tape elements of the adjacent layers.Type: ApplicationFiled: June 12, 2008Publication date: December 17, 2009Inventors: Yunzhang Wang, Howell B. Eleazer
-
Patent number: 7550399Abstract: The present invention relates generally to substrates that exhibit useful, auto adaptable surface energy properties that depend on the environment of the substrate. Such surface energy properties provide relatively high advancing and receding contact angles for liquids when in contact with the target substrate surface. The substrates exhibit low surface energy quantities of at most about 20 millijoules per square meter (mJ/m2) at a temperature of about 25 degrees C. and a surface energy greater than about 20 mJ/m2 at, or with exposure to, a temperature of about 40 degrees C. More specifically, encompassed within the present invention are textile substrates having this highly desirable unique surface energy modification property and which exhibit wash durable oil and water repellency and stain release features. Novel compositions and formulations that impart such surface energy modifications to substrates are also encompassed within this invention, as well as methods for producing such treated substrates.Type: GrantFiled: March 11, 2008Date of Patent: June 23, 2009Assignee: Milliken & CompanyInventors: William C. Kimbrell, Jr., Xinggao Fang, Yunzhang Wang, Dominick J. Valenti, Daniel T. McBride
-
Patent number: 7485588Abstract: This invention relates to textile substrates to which a finishing treatment has been applied during the manufacturing process. Such a finishing treatment provides improved water and/or oil repellency and stain and soil resistance. The finishing treatment generally includes a repellent agent, a stain release agent, and a particulate component. Other compounds may be added to the treatment, such as stain-blocking agents, crosslinking agents, coupling agents, antimicrobial agents, and pH adjusting agents. The components of the finishing treatment are generally applied to the textile substrate using an application process that results in layered structures on the surface of the treated substrate, which has been found to greatly improve the durability of the treatment. Such treated textile substrates thus exhibit excellent stain and soil resistance and water and/or oil repellency properties.Type: GrantFiled: June 3, 2005Date of Patent: February 3, 2009Inventors: Yunzhang Wang, Daike Wang, Simon X. Zhang
-
Patent number: 7468333Abstract: The present invention relates generally to substrates that exhibit useful, auto adaptable surface energy properties that depend on the environment of the substrate. Such surface energy properties provide relatively high advancing and receding contact angles for liquids when in contact with the target substrate surface. The substrates exhibit low surface energy quantities of at most about 20 millijoules per square meter (mJ/m2) at a temperature of about 25 degrees C. and a surface energy greater than about 20 mJ/m2 at, or with exposure to, a temperature of about 40 degrees C. More specifically, encompassed within the present invention are textile substrates having this highly desirable unique surface energy modification property and which exhibit wash durable oil and water repellency and stain release features. Novel compositions and formulations that impart such surface energy modifications to substrates are also encompassed within this invention, as well as methods for producing such treated substrates.Type: GrantFiled: January 10, 2003Date of Patent: December 23, 2008Assignee: Milliken & CompanyInventors: Wiliam C. Kimbrell, Jr., Xinggao Fang, Yunzhang Wang, Dominick J. Valenti, Daniel T. McBride
-
Textile substrates having layered finish structure for improving liquid repellency and stain release
Patent number: 7407899Abstract: This invention relates to textile substrates to which a finishing treatment has been applied during the manufacturing process. Such a finishing treatment provides improved water and/or oil repellency and stain and soil resistance. The finishing treatment generally includes a repellent agent, a stain release agent, and a particulate component. Other compounds may be added to the treatment, such as stain-blocking agents, crosslinking agents, coupling agents, antimicrobial agents, and pH adjusting agents. The components of the finishing treatment are generally applied to the textile substrate using an application process that results in layered structures on the surface of the treated substrate, which has been found to greatly improve the durability of the treatment. Such treated textile substrates thus exhibit excellent stain and soil resistance and water and/or oil repellency properties.Type: GrantFiled: June 3, 2005Date of Patent: August 5, 2008Assignee: Milliken & CompanyInventors: Yunzhang Wang, Daike Wang, Simon X. Zhang -
Publication number: 20080160850Abstract: The present invention relates generally to substrates that exhibit useful, auto adaptable surface energy properties that depend on the environment of the substrate. Such surface energy properties provide relatively high advancing and receding contact angles for liquids when in contact with the target substrate surface. The substrates exhibit low surface energy quantities of at most about 20 millijoules per square meter (mJ/m2) at a temperature of about 25 degrees C. and a surface energy greater than about 20 mJ/m2 at, or with exposure to, a temperature of about 40 degrees C. More specifically, encompassed within the present invention are textile substrates having this highly desirable unique surface energy modification property and which exhibit wash durable oil and water repellency and stain release features. Novel compositions and formulations that impart such surface energy modifications to substrates are also encompassed within this invention, as well as methods for producing such treated substrates.Type: ApplicationFiled: March 11, 2008Publication date: July 3, 2008Inventors: William C. Kimbrell, Xinggao Fang, Yunzhang Wang, Dominick J. Valenti, Daniel T. McBride
-
Publication number: 20080003456Abstract: The present invention includes methods for fabricating polymer light emitting devices by screen-printing. These light emitting devices use silver paste as the top electrode, eliminating the use of evaporated low work function metal. This is made possible by the presence of a buffer layer such as the sulfonated polyaniline layer in the structure of SCALE devices. These devices allow a very inexpensive and fast means to form stable top electrodes for large-scale polymer light emitting device fabrication.Type: ApplicationFiled: August 13, 2007Publication date: January 3, 2008Applicant: The Ohio State UniversityInventors: Arthur Epstein, Yunzhang Wang
-
Publication number: 20070204444Abstract: Compositions and methods for treating textile substrates to obtain superior liquid repellent properties are disclosed. Durable microscopic surface structures imparted to the fibrous substrate allow liquids to bead up and roll off of its surface. Mechanical abrasion or sanding techniques may be used to create the microscopic surface structures on the surface of a fibrous textile substrate, without substantially breaking fibers, followed by a chemical treatment using, for example, fluorocarbon-containing repellent compositions. Particles may be employed in combination with repellent compositions to achieve superior repellent properties. A property of the roughened surface fibers, the Roughness Factor, is used to characterize the microscopic surface structures on the treated textile surface. Treated textile substrates are disclosed which achieve superior water and oil repellency, even after multiple abrasion or laundering cycles.Type: ApplicationFiled: May 2, 2007Publication date: September 6, 2007Inventors: Yunzhang Wang, Daniel McBride, Randolph Kohlman
-
Publication number: 20070149072Abstract: An airbag fabric has a finish on a surface thereof, the finish comprising a plurality of particles having a diameter of about 20 ?m or less. A process for producing a coated airbag fabric comprises the steps of (a) providing an airbag fabric, (b) contacting at least one surface of the airbag fabric with a coating composition comprising a plurality of particles having a diameter of about 20 ?m or less, and (c) drying the fabric treated in step (b) to produce a finish on the airbag fabric.Type: ApplicationFiled: November 28, 2006Publication date: June 28, 2007Inventors: Yunzhang Wang, Ramesh Keshavaraj
-
Publication number: 20070105471Abstract: A puncture resistant composite comprises a first textile layer and a second textile layer, each of which comprises a plurality of yarns or fibers having a tenacity of about 8 or more grams per denier. The layers are stacked so that the upper surface of the second textile layer is adjacent to the lower surface of the first textile layer. At least one of the lower surface of the first textile layer and the upper surface of the second textile layer comprises about 10 wt. % or less, based on the total weight of the textile layer, of a coating comprising a plurality of particles having a diameter of about 20 ?m or less. The coating can also comprise a binder. The composite can also be used in combination with other puncture resistant and/or ballistic resistant materials or components. A process for producing a puncture resistant composite is also provided.Type: ApplicationFiled: October 4, 2006Publication date: May 10, 2007Inventors: Yunzhang Wang, Thomas Mabe
-
Patent number: 7213309Abstract: Compositions and methods for treating textile substrates to obtain superior liquid repellent properties are disclosed. Durable microscopic surface structures imparted to the fibrous substrate allow liquids to bead up and roll off of its surface. Mechanical abrasion or sanding techniques may be used to create the microscopic surface structures on the surface of a fibrous textile substrate, without substantially breaking fibers, followed by a chemical treatment using, for example, fluorocarbon-containing repellent compositions. Particles may be employed in combination with repellent compositions to achieve superior repellent properties. A property of the roughened surface fibers, the Roughness Factor, is used to characterize the microscopic surface structures on the treated textile surface. Treated textile substrates are disclosed which achieve superior water and oil repellency, even after multiple abrasion or laundering cycles.Type: GrantFiled: February 24, 2004Date of Patent: May 8, 2007Inventors: Yunzhang Wang, Daniel T. McBride, Randolph S. Kohlman
-
Patent number: 7025378Abstract: An airbag formed to have a series of nodes therein, each node defined by pinching and jointing a portion of alternate opposing sides of a tubular structure so that each node lies generally in a plane at 90° (or near 90°) with respect to an adjacent node. The pinch points or joints are preferably short segments or small areas where the opposing sides are jointed by heat welding, sewing, ultrasonic welding, by adhesives, or by weaving.Type: GrantFiled: July 10, 2003Date of Patent: April 11, 2006Assignee: Milliken & CompanyInventor: Yunzhang Wang
-
Textile substrates having layered finish structure for improving liquid repellency and stain release
Publication number: 20050272334Abstract: This invention relates to textile substrates to which a finishing treatment has been applied during the manufacturing process. Such a finishing treatment provides improved water and/or oil repellency and stain and soil resistance. The finishing treatment generally includes a repellent agent, a stain release agent, and a particulate component. Other compounds may be added to the treatment, such as stain-blocking agents, crosslinking agents, coupling agents, antimicrobial agents, and pH adjusting agents. The components of the finishing treatment are generally applied to the textile substrate using an application process that results in layered structures on the surface of the treated substrate, which has been found to greatly improve the durability of the treatment. Such treated textile substrates thus exhibit excellent stain and soil resistance and water and/or oil repellency properties.Type: ApplicationFiled: June 3, 2005Publication date: December 8, 2005Inventors: Yunzhang Wang, Daike Wang, Simon Zhang -
Publication number: 20050272333Abstract: This invention relates to textile substrates to which a finishing treatment has been applied during the manufacturing process. Such a finishing treatment provides improved water and/or oil repellency and stain and soil resistance. The finishing treatment generally includes a repellent agent, a stain release agent, and a particulate component. Other compounds may be added to the treatment, such as stain-blocking agents, crosslinking agents, coupling agents, antimicrobial agents, and pH adjusting agents. The components of the finishing treatment are generally applied to the textile substrate using an application process that results in layered structures on the surface of the treated substrate, which has been found to greatly improve the durability of the treatment. Such treated textile substrates thus exhibit excellent stain and soil resistance and water and/or oil repellency properties.Type: ApplicationFiled: June 3, 2005Publication date: December 8, 2005Inventors: Yunzhang Wang, Daike Wang, Simon Zhang
-
Patent number: 6962363Abstract: A two or more chambered airbag provides much improved safety and/or performance. A modified single chamber airbag can be used as the primary chamber of the two-chamber airbag. A piece of fabric of appropriate size is sewn to the inside or outside surface of the front panel of the primary chamber to create the secondary chamber. One or more apertures are opened between the primary and secondary chambers. In order for the secondary chamber to inflate properly, the tethers of the primary chamber are shortened to 50% to 80% of their original length. The size or location of the tether sewing to the inner surface of the front panel of the primary chamber is also adjusted to create a desired shape of the secondary chamber when deployed.Type: GrantFiled: July 6, 2001Date of Patent: November 8, 2005Assignee: Milliken & CompanyInventors: Yunzhang Wang, Ramesh Keshavaraj
-
Patent number: 6962757Abstract: In general terms, the present invention includes a light emitting polymeric material the light emitting polymeric material capable of producing electroluminescence upon being provided with a flow of electrons, the light emitting polymeric material comprising a plurality of polymeric chains comprising polymeric chains each having substituent moieties of sufficient number and size and extending from the polymeric chain and about a substantial portion of the circumference about the polymer chain so as to maintain the polymeric chains in a sufficiently deaggregated state (referred to herein as a “strapped” polymer), so as to substantially prevent the redshifting of the electroluminescence and the lowering of light emission efficiency of the electroluminescence.Type: GrantFiled: August 27, 2003Date of Patent: November 8, 2005Assignee: The Ohio State Universtiy Research FoundationInventors: Arthur J. Epstein, Yunzhang Wang, Darren D. Gebler, Timothy M. Swager
-
Publication number: 20050186872Abstract: Compositions and methods for treating textile substrates to obtain superior liquid repellent properties are disclosed. Durable microscopic surface structures imparted to the fibrous substrate allow liquids to bead up and roll off of its surface. Mechanical abrasion or sanding techniques may be used to create the microscopic surface structures on the surface of a fibrous textile substrate, without substantially breaking fibers, followed by a chemical treatment using, for example, fluorocarbon-containing repellent compositions. Particles may be employed in combination with repellent compositions to achieve superior repellent properties. A property of the roughened surface fibers, the Roughness Factor, is used to characterize the microscopic surface structures on the treated textile surface. Treated textile substrates are disclosed which achieve superior water and oil repellency, even after multiple abrasion or laundering cycles.Type: ApplicationFiled: February 24, 2004Publication date: August 25, 2005Inventors: Yunzhang Wang, Daniel McBride, Randolph Kohlman
-
Publication number: 20050186873Abstract: Compositions and methods for treating textile substrates to obtain superior liquid repellent properties are disclosed. Durable microscopic surface structures imparted to the fibrous substrate allow liquids to bead up and roll off of its surface. Mechanical abrasion or sanding techniques may be used to create the microscopic surface structures on the surface of a fibrous textile substrate, without substantially breaking fibers, followed by a chemical treatment using, for example, fluorocarbon-containing repellent compositions. Particles may be employed in combination with repellent compositions to achieve superior repellent properties. A property of the roughened surface fibers, the Roughness Factor, is used to characterize the microscopic surface structures on the treated textile surface. Treated textile substrates are disclosed which achieve superior water and oil repellency, even after multiple abrasion or laundering cycles.Type: ApplicationFiled: February 24, 2004Publication date: August 25, 2005Inventors: Yunzhang Wang, Daniel McBride, Randolph Kohlman
-
Patent number: 6899923Abstract: The present invention relates generally to substrates that exhibit useful, auto adaptable surface energy properties that depend on the environment of the substrate. Such surface energy properties provide relatively high advancing and receding contact angles for liquids when in contact with the target substrate surface. The substrates exhibit low surface energy quantities of at most about 20 millijoules per square meter (mJ/m2) at a temperature of about 25 degrees C. and a surface energy greater than about 20 mJ/m2 at, or with exposure to, a temperature of about 40 degrees C. More specifically, encompassed within the present invention are textile substrates having this highly desirable unique surface energy modification property and which exhibit wash durable oil and water repellency and stain release features. Novel compositions and formulations that impart such surface energy modifications to substrates are also encompassed within this invention, as well as methods for producing such treated substrates.Type: GrantFiled: January 10, 2003Date of Patent: May 31, 2005Assignee: Milliken & CompanyInventors: William C. Kimbrell, Jr., Xinggao Fang, Yunzhang Wang, Daniel T. McBride