Patents by Inventor Yuon Chiu

Yuon Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230120031
    Abstract: The present invention provides a process for producing hydrogen iodide. The process includes providing a vapor-phase reactant stream comprising hydrogen and iodine and reacting the reactant stream in the presence of a catalyst to produce a product stream comprising hydrogen iodide. The catalyst includes at least one selected from the group of nickel, cobalt, iron, nickel oxide, cobalt oxide, and iron oxide. The catalyst is supported on a support.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 20, 2023
    Inventors: Terris Yang, Haiyou Wang, Yuon Chiu, Richard Wilcox, Christian Jungong, Haluk Kopkalli
  • Publication number: 20230123085
    Abstract: A process for making 2,3,3,3-tetrafluoropropene (HFO-1234yf) includes providing a composition including 2-chloro-1,1,1,2-tetrafluorepropane (HCFC-244bb) to a reactor including a heater surface at a surface temperature greater than about 850° F. (454°C), and then bringing the composition into contact with the heater surface for a contact time of less than 10 seconds to dehydrochlorinate a portion of the HCFC-244bb to make HFO-1234yf.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 20, 2023
    Inventors: Haluk Kopkalli, Carlos Navar, Yuon Chiu, Haiyou Wang
  • Patent number: 11554956
    Abstract: The present invention provides a process for producing hydrogen iodide. The process includes providing a vapor-phase reactant stream comprising hydrogen and iodine and reacting the reactant stream in the presence of a catalyst to produce a product stream comprising hydrogen iodide. The catalyst includes at least one selected from the group of nickel, cobalt, iron, nickel oxide, cobalt oxide, and iron oxide. The catalyst is supported on a support.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: January 17, 2023
    Assignee: Honeywell International Inc.
    Inventors: Terris Yang, Haiyou Wang, Yuon Chiu, Richard Wilcox, Christian Jungong, Haluk Kopkalli
  • Patent number: 11555001
    Abstract: A process for making 2,3,3,3-tetrafluoropropene (HFO-1234yf) includes providing a composition including 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) to a reactor including a heater surface at a surface temperature greater than about 850° F. (454° C.), and then bringing the composition into contact with the heater surface for a contact time of less than 10 seconds to dehydrochlorinate a portion of the HCFC-244bb to make HFO-1234yf.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: January 17, 2023
    Assignee: Honeywell International Inc.
    Inventors: Haluk Kopkalli, Carlos Navar, Yuon Chiu, Haiyou Wang
  • Publication number: 20220219980
    Abstract: Methods of recovering iodine (I2) from a stream including iodine (I2) vapor and at least one of: an inert gas and water vapor can include contacting the stream with an alkaline solution to form an iodide salt, contacting the stream with an adsorbent to selectively adsorb water from the stream, contacting the stream with a concentrated acid to absorb the water vapor from the stream, desublimating or condensing the iodine (I2) vapor to form solid or liquid iodine (I2), or contacting the stream with a material to condense or de-sublimate the iodine (I2) vapor from the stream as the material at least one of: absorbs latent heat through a phase change of the material and absorbs sensible heat.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 14, 2022
    Inventors: Yuon Chiu, Haluk Kopkalli, Tao Wang, Kevin Uhrich
  • Publication number: 20220219979
    Abstract: A method of removing water from a mixture of hydrogen iodide (HI) and water includes providing a mixture comprising hydrogen iodide and water and contacting the mixture with an adsorbent to selectively adsorb water from the mixture, contacting the mixture with a weak acid to absorb water from the mixture and/or separating the water from hydrogen iodide (HI) by azeotropic distillation to produce anhydrous hydrogen iodide (HI).
    Type: Application
    Filed: January 10, 2022
    Publication date: July 14, 2022
    Inventors: Yuon Chiu, Haiyou Wang, Haluk Kopkalli, Christian Jungong, Haridasan K. Nair, Rajiv Ratna Singh, Daniel C. Merkel, Tao Wang, Terris Yang, Richard Wilcox
  • Publication number: 20220219981
    Abstract: A method of removing water from a mixture of iodine (I2) and water includes providing a mixture comprising iodine and water and: contacting the mixture with an adsorbent to selectively adsorb water from the mixture, contacting the mixture with a concentrated acid to absorb water from the mixture, separating the water from mixture by distillation, contacting the mixture with a gas that is inert to iodine (I2), contacting the mixture with hydrogen iodide (HI), or combinations thereof.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 14, 2022
    Inventors: Yuon Chiu, Haiyou Wang, Haluk Kopkalli, Christian Jungong, Haridasan K. Nair, Rajiv Ratna Singh, Daniel C. Merkel, Tao Wang, Terris Yang, Richard Wilcox
  • Publication number: 20220080243
    Abstract: Heterogeneous azeotrope or azeotrope-like compositions comprising trifluoroiodomethane (CF3I) and water which may include from about 47.7 wt. % to about 99.0 wt. % trifluoroiodomethane (CF3I) and from about 1.0 wt. % to about 52.3 wt. % water and having a boiling point between about 18.0° C. and about 19.0° C. at a pressure of between about 58.0 psia and about 60.0 psia. The azeotrope or azeotrope-like compositions may be used to separate impurities from trifluoroiodomethane (CF3I).
    Type: Application
    Filed: September 3, 2021
    Publication date: March 17, 2022
    Inventors: Haluk Kopkalli, Jennifer W. McClaine, Tao Wang, Richard Wilcox, Yuon Chiu, Hang T. Pham
  • Publication number: 20210163383
    Abstract: A process for making 2,3,3,3-tetrafluoropropene (HFO-1234yf) includes providing a composition including 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) to a reactor including a heater surface at a surface temperature greater than about 850° F. (454° C.), and then bringing the composition into contact with the heater surface for a contact time of less than 10 seconds to dehydrochlorinate a portion of the HCFC-244bb to make HFO-1234yf.
    Type: Application
    Filed: June 5, 2019
    Publication date: June 3, 2021
    Inventors: Haluk KOPKALLI, Carlos NAVAR, Yuon CHIU, Haiyou WANG
  • Patent number: 10851032
    Abstract: The invention provides a reactor comprising a reaction chamber having a catalytic surface in contact with reactants in said chamber, and a source for passing electrical current through said catalytic surface. The reactor can be used for dehydrohalogentation reactions, such as dehydrochlorination of HCFC-244bb to HFO-1234yf and for reactions where zero valent metals are employed for catalysis. The invention further provides a process to prepare HFO-1234yf from HCFC-244bb using an electrically heated reaction chamber.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: December 1, 2020
    Assignee: Honeywell International Inc.
    Inventors: Haluk Kopkalli, Ron Joseph Roof, Yuon Chiu, Hsueh Sung Tung, Robert A. Smith, Haiyou Wang
  • Publication number: 20200331753
    Abstract: The present invention provides a process for producing hydrogen iodide. The process includes providing a vapor-phase reactant stream comprising hydrogen and iodine and reacting the reactant stream in the presence of a catalyst to produce a product stream comprising hydrogen iodide. The catalyst includes at least one selected from the group of nickel, cobalt, iron, nickel oxide, cobalt oxide, and iron oxide. The catalyst is supported on a support.
    Type: Application
    Filed: April 15, 2020
    Publication date: October 22, 2020
    Inventors: Terris Yang, Haiyou Wang, Yuon Chiu, Richard Wilcox, Christian Jungong, Haluk Kopkalli
  • Publication number: 20200199049
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane (CF3I). The process may include providing a vapor-phase reactant stream comprising trifluoroacetic acid and iodine and reacting the reactant stream in the presence of a catalyst to produce a product stream comprising the trifluoroiodomethane. The catalyst includes silicon carbide.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 25, 2020
    Inventors: Terris Yang, Haiyou Wang, Yuon Chiu, Richard Wilcox, Christian Jungong
  • Patent number: 10683247
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane (CF3I). The process may include providing a vapor-phase reactant stream comprising trifluoroacetic acid and iodine and reacting the reactant stream in the presence of a catalyst to produce a product stream comprising the trifluoroiodomethane. The catalyst includes silicon carbide.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: June 16, 2020
    Assignee: Honeywell International Inc.
    Inventors: Terris Yang, Haiyou Wang, Yuon Chiu, Richard Wilcox, Christian Jungong
  • Patent number: 10508067
    Abstract: A process for the manufacture of halogenated olefins in semi-batch mode by dehydrohalogenation of halogenated alkanes in the presence of an aqueous base such as KOH which simultaneously neutralizes the resulting hydrogen halide. During the process, aqueous base is continuously added to the haloalkane which results in better yields, lower by-product formation and safer/more controllable operation.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: December 17, 2019
    Assignee: Honeywell International Inc.
    Inventors: George R. Cook, Haluk Kopkalli, Stephen A. Cottrell, Yuon Chiu, Peter Scheidle, Daniel C. Merkel
  • Publication number: 20190352242
    Abstract: The present disclosure provides separation processes for removing heavy organics that are formed in various production processes of HCFO-1233zd(E). Such separation processes allow for the recovery and/or separation of the heavy organics from reactants that are used to form HCFO-1233zd(E), including HF. Such separation or recovery processes may utilize various separation techniques (e.g., decanting, liquid-liquid separation, distillation, and flash distillation) and may also utilize the unique properties of azeotropic or azeotrope-like compositions. Recovery of the heavy organic that is substantially free from HF may allow for their use in subsequent manufacture processes or disposal.
    Type: Application
    Filed: August 1, 2019
    Publication date: November 21, 2019
    Inventors: Yuon Chiu, Stephen A. Cottrell, Gustavo Cerri, Jennifer W. McClaine, Tao Wang, Rajiv Ratna Singh, Rajiv Banavali
  • Patent number: 10364201
    Abstract: In certain aspects, the present invention relates to methods for increasing the cost efficiency and safety of the hydrogenation of a fluorinated olefin by controlling the reaction conditions and parameters. In further aspects, the hydrogenation reaction is provided in a two stage reaction wherein the reactant amounts, temperature and other parameters are controlled such that the conversion percentage, selectivity, and reaction parameters are all within commercially acceptable levels.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: July 30, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Stephen A. Cottrell, John J. Senetar, Hsueh S. Tung, Daniel C. Merkel, Yuon Chiu, Haluk Kopkalli
  • Patent number: 10351494
    Abstract: The present disclosure provides various manufacturing processes for the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf or 1234yf). Such methods may allow for the improved yields, more economical processes, and waste reduction in the production of 1234yf and subsequent processes.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: July 16, 2019
    Assignee: Honeywell International Inc.
    Inventors: Haiyou Wang, Terris Yang, Daniel C. Merkel, Haluk Kopkalli, Gustavo Cerri, Yuon Chiu, Richard D. Horwath
  • Publication number: 20190210944
    Abstract: The present disclosure provides various manufacturing processes for the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf or 1234yf). Such methods may allow for the improved yields, more economical processes, and waste reduction in the production of 1234yf and subsequent processes.
    Type: Application
    Filed: January 8, 2018
    Publication date: July 11, 2019
    Inventors: Haiyou Wang, Terris Yang, Daniel C. Merkel, Haluk Kopkalli, Gustavo Cerri, Yuon Chiu, Richard D. Horwath
  • Publication number: 20190144364
    Abstract: A method for producing 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene using a single set of four unit operations, the unit operations being (1) hydrogenation of a starting material comprising hexafluoropropene and optionally recycled 1,1,1,2,3-pentafluoropropene; (2) separation of the desired intermediate hydrofluoroalkane, such as 1,1,1,2,3,3-hexafluoropropane and/or 1,1,1,2,3-pentafluoropropane; (3) dehydrofluorination of the intermediate hydrofluoroalkane to produce the desired 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene, followed by another separation to isolate the desired product and, optionally, recycle of the 1,1,1,2,3-pentafluoropropene.
    Type: Application
    Filed: June 11, 2018
    Publication date: May 16, 2019
    Inventors: Yuon Chiu, Stephen A. Cottrell, Hsueh Sung Tung, Haluk Kopkalli, Gustavo Cerri
  • Publication number: 20190084906
    Abstract: The present invention relates, in part, to the discovery that, during the fluorination of certain fluoroolefin starting reagents, oligomerization/polymerization of such reagents reduces the conversion process and leads to increased catalyst deactivation. The present invention also illustrates that vaporizing such starting reagents in the presence of one or more organic co-feed reduces such oligomerization/polymerization and improves catalytic stability.
    Type: Application
    Filed: November 20, 2018
    Publication date: March 21, 2019
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou WANG, Hsueh Sung TUNG, Selma BEKTESEVIC, Daniel C. MERKEL, Haluk KOPKALLI, Yuon CHIU