Patents by Inventor Yuri Abramov

Yuri Abramov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12063858
    Abstract: The invention discloses a method and modified aerodynamic apparatuses: fluid pushers-off and fluid motion-sensors, making enable efficient implementation and use of a controllable enhanced jet-effect, either the waving jet-effect, the Coanda jet-effect, the lift-effect, the effect of thrust, the Venturi effect, and/or the de Laval jet-effect, all are controllable using the Peltier effect and/or the Seebeck effect. The modified aerodynamic apparatuses are geometrically shaped and supplied with built-in thermoelectric devices, wherein the presence of the thermoelectric devices provides for new functional properties of the modified aerodynamic apparatuses. The method solves the problem of effective control of the operation of modified aerodynamic apparatuses such as airfoil wings of a flying vehicle, convergent-divergent nozzles, loudspeakers, and detectors of acoustic waves, all of a highly-efficient functionality.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: August 13, 2024
    Assignee: SOLITON HOLDINGS CORPORATION, DELAWARE CORPORATION
    Inventor: Yuri Abramov
  • Patent number: 11931199
    Abstract: The invention discloses a novel passive sound transformer, either a sound-booster or a sound-silencer, embodied as an acoustic waveguide, a specific shape of which provides for either amplifying the intensity of acoustic waves at the expense of both the heat energy and the concomitant turbulence of moving fluid wherein the amplified intensity of the acoustic waves is manifested as sound loudness boosting or, contrarywise, transforming the wave power of elastic waves into the heat of the ambient fluid.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: March 19, 2024
    Inventor: Yuri Abramov
  • Patent number: 11705780
    Abstract: The invention provides a method for computational fluid dynamics and apparatuses making enable an efficient implementation and use of an enhanced jet-effect, either the Coanda-jet-effect, the hydrophobic jet-effect, or the waving-jet-effect, triggered by specifically shaped corpuses and tunnels. The method is based on the approaches of the kinetic theory of matter providing generalized equations of fluid motion and is generalized and translated into terms of electromagnetism. The method is applicable for slow-flowing as well as fast-flowing real compressible-extendable generalized fluids and enables optimal design of convergent-divergent nozzles, providing for the most efficient jet-thrust. The method can be applied to airfoil shape optimization for bodies flying separately and in a multi-stage cascaded sequence. The method enables apparatuses for electricity harvesting from the fluid heat-energy, providing a positive net-efficiency.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: July 18, 2023
    Assignee: SOLITON HOLDINGS CORPORATION, DELAWARE CORPORATION
    Inventor: Yuri Abramov
  • Patent number: 11499525
    Abstract: The invention provides a method for computational fluid dynamics and apparatuses making enable an efficient implementation and use of an enhanced jet-effect, either the Coanda-jet-effect, the hydrophobic jet-effect, or the waving-jet-effect, triggered by specifically shaped corpuses and tunnels. The method is based on the approaches of the kinetic theory of matter, thermodynamics, and continuum mechanics, providing generalized equations of fluid motion. The method is applicable for slow-flowing as well as fast-flowing real compressible-extendable fluids and enables optimal design of convergent-divergent nozzles, providing for the most efficient jet-thrust. The method can be applied to airfoil shape optimization for bodies flying separately and in a multi-stage cascaded sequence. The method enables apparatuses for electricity harvesting from the fluid heat-energy, providing a positive net-efficiency. The method enables efficient water-harvesting from air.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: November 15, 2022
    Inventor: Yuri Abramov
  • Patent number: 11493066
    Abstract: The invention provides a method for computational fluid dynamics and apparatuses making enable an efficient implementation and use of an enhanced jet-effect, either the Coanda-jet-effect, the hydrophobic jet-effect, or the waving-jet-effect, triggered by specifically shaped corpuses and tunnels. The method is based on the approaches of the kinetic theory of matter providing generalized equations of fluid motion and is generalized and translated into terms of electromagnetism. The method is applicable for slow-flowing as well as fast-flowing real compressible-extendable generalized fluids and enables optimal design of convergent-divergent nozzles, providing for the most efficient jet-thrust. The method can be applied to airfoil shape optimization for bodies flying separately and in a multi-stage cascaded sequence. The method enables apparatuses for electricity harvesting from the fluid heat-energy, providing a positive net-efficiency.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: November 8, 2022
    Assignee: SOLITON HOLDINGS
    Inventor: Yuri Abramov
  • Publication number: 20220240888
    Abstract: The invention discloses a novel passive sound transformer, either a sound-booster or a sound-silencer, embodied as an acoustic waveguide, a specific shape of which provides for either amplifying the intensity of acoustic waves at the expense of both the heat energy and the concomitant turbulence of moving fluid wherein the amplified intensity of the acoustic waves is manifested as sound loudness boosting or, contrarywise, transforming the wave power of elastic waves into the heat of the ambient fluid.
    Type: Application
    Filed: January 28, 2021
    Publication date: August 4, 2022
    Inventor: Yuri Abramov
  • Publication number: 20220173299
    Abstract: The invention discloses a method and modified aerodynamic apparatuses: fluid pushers-off and fluid motion-sensors, making enable efficient implementation and use of a controllable enhanced jet-effect, either the waving jet-effect, the Coanda jet-effect, the lift-effect, the effect of thrust, the Venturi effect, and/or the de Laval jet-effect, all are controllable using the Peltier effect and/or the Seebeck effect. The modified aerodynamic apparatuses are geometrically shaped and supplied with built-in thermoelectric devices, wherein the presence of the thermoelectric devices provides for new functional properties of the modified aerodynamic apparatuses. The method solves the problem of effective control of the operation of modified aerodynamic apparatuses such as airfoil wings of a flying vehicle, convergent-divergent nozzles, loudspeakers, and detectors of acoustic waves, all of a highly-efficient functionality.
    Type: Application
    Filed: December 1, 2020
    Publication date: June 2, 2022
    Inventor: Yuri ABRAMOV
  • Patent number: 10514496
    Abstract: The invention provides an improved method and apparatus, in general, for a use of a sheaf of unclad waveguide beam-makers to provide for a multi-stage forcedly-conveying waveguide effect of waveguide fibers in combination with the self-focusing waveguide effect of parabolic antennas, on the one hand, to absorb the ambient radiation, and in particular, for sunlight rays energy absorption to detect and transform the energy into either warmth, or electrical power, or mechanical thrust, and, on the other hand, to transmit the wave-energy through a homogeneous poorly-permeable medium.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: December 24, 2019
    Inventor: Yuri Abramov
  • Publication number: 20190280561
    Abstract: The invention provides a method for computational fluid dynamics and apparatuses making enable an efficient implementation and use of an enhanced jet-effect, either the Coanda-jet-effect, the hydrophobic jet-effect, or the waving-jet-effect, triggered by specifically shaped corpuses and tunnels. The method is based on the approaches of the kinetic theory of matter providing generalized equations of fluid motion and is generalized and translated into terms of electromagnetism. The method is applicable for slow-flowing as well as fast-flowing real compressible-extendable generalized fluids and enables optimal design of convergent-divergent nozzles, providing for the most efficient jet-thrust. The method can be applied to airfoil shape optimization for bodies flying separately and in a multi-stage cascaded sequence. The method enables apparatuses for electricity harvesting from the fluid heat-energy, providing a positive net-efficiency.
    Type: Application
    Filed: May 15, 2019
    Publication date: September 12, 2019
    Inventor: Yuri ABRAMOV
  • Publication number: 20190277317
    Abstract: The invention provides a method for computational fluid dynamics and apparatuses making enable an efficient implementation and use of an enhanced jet-effect, either the Coanda-jet-effect, the hydrophobic jet-effect, or the waving-jet-effect, triggered by specifically shaped corpuses and tunnels. The method is based on the approaches of the kinetic theory of matter providing generalized equations of fluid motion and is generalized and translated into terms of electromagnetism. The method is applicable for slow-flowing as well as fast-flowing real compressible-extendable generalized fluids and enables optimal design of convergent-divergent nozzles, providing for the most efficient jet-thrust. The method can be applied to airfoil shape optimization for bodies flying separately and in a multi-stage cascaded sequence. The method enables apparatuses for electricity harvesting from the fluid heat-energy, providing a positive net-efficiency.
    Type: Application
    Filed: May 15, 2019
    Publication date: September 12, 2019
    Inventor: Yuri ABRAMOV
  • Publication number: 20190280562
    Abstract: The invention provides a method for computational fluid dynamics and apparatuses making enable an efficient implementation and use of an enhanced jet-effect, either the Coanda-jet-effect, the hydrophobic jet-effect, or the waving-jet-effect, triggered by specifically shaped corpuses and tunnels. The method is based on the approaches of the kinetic theory of matter providing generalized equations of fluid motion and is generalized and translated into terms of electromagnetism. The method is applicable for slow-flowing as well as fast-flowing real compressible-extendable generalized fluids and enables optimal design of convergent-divergent nozzles, providing for the most efficient jet-thrust. The method can be applied to airfoil shape optimization for bodies flying separately and in a multi-stage cascaded sequence. The method enables apparatuses for electricity harvesting from the fluid heat-energy, providing a positive net-efficiency.
    Type: Application
    Filed: May 15, 2019
    Publication date: September 12, 2019
    Inventor: Yuri ABRAMOV
  • Publication number: 20180372949
    Abstract: The invention provides an improved method and apparatus, in general, for a use of a sheaf of unclad waveguide beam-makers to provide for a multi-stage forcedly-conveying waveguide effect of waveguide fibers in combination with the self-focusing waveguide effect of parabolic antennas, on the one hand, to absorb the ambient radiation, and in particular, for sunlight rays energy absorption to detect and transform the energy into either warmth, or electrical power, or mechanical thrust, and, on the other hand, to transmit the wave-energy through a homogeneous poorly-permeable medium.
    Type: Application
    Filed: May 17, 2018
    Publication date: December 27, 2018
    Inventor: Yuri ABRAMOV
  • Publication number: 20180266395
    Abstract: The invention provides a method for computational fluid dynamics and apparatuses making enable an efficient implementation and use of an enhanced jet-effect, either the Coanda-jet-effect, the hydrophobic jet-effect, or the waving-jet-effect, triggered by specifically shaped corpuses and tunnels. The method is based on the approaches of the kinetic theory of matter, thermodynamics, and continuum mechanics, providing generalized equations of fluid motion. The method is applicable for slow-flowing as well as fast-flowing real compressible-extendable fluids and enables optimal design of convergent-divergent nozzles, providing for the most efficient jet-thrust. The method can be applied to airfoil shape optimization for bodies flying separately and in a multi-stage cascaded sequence. The method enables apparatuses for electricity harvesting from the fluid heat-energy, providing a positive net-efficiency. The method enables efficient water-harvesting from air.
    Type: Application
    Filed: May 17, 2018
    Publication date: September 20, 2018
    Inventor: Yuri ABRAMOV
  • Publication number: 20180266394
    Abstract: The invention provides a method for computational fluid dynamics and apparatuses making enable an efficient implementation and use of an enhanced jet-effect, either the Coanda-jet-effect, the hydrophobic jet-effect, or the waving-jet-effect, triggered by specifically shaped corpuses and tunnels. The method is based on the approaches of the kinetic theory of matter, thermodynamics, and continuum mechanics, providing generalized equations of fluid motion. The method is applicable for slow-flowing as well as fast-flowing real compressible-extendable fluids and enables optimal design of convergent-divergent nozzles, providing for the most efficient jet-thrust. The method can be applied to airfoil shape optimization for bodies flying separately and in a multi-stage cascaded sequence. The method enables apparatuses for electricity harvesting from the fluid heat-energy, providing a positive net-efficiency. The method enables efficient water-harvesting from air.
    Type: Application
    Filed: May 17, 2018
    Publication date: September 20, 2018
    Inventor: Yuri ABRAMOV
  • Publication number: 20170316133
    Abstract: The invention provides a method for computational fluid dynamics and apparatuses making enable an efficient implementation and use of an enhanced jet-effect, either the Coanda-jet-effect, the hydrophobic jet-effect, or the waving-jet-effect, triggered by specifically shaped corpuses and tunnels. The method is based on the approaches of the kinetic theory of matter, thermodynamics, and continuum mechanics, providing generalized equations of fluid motion. The method is applicable for slow-flowing as well as fast-flowing real compressible-extendable fluids and enables optimal design of convergent-divergent nozzles, providing for the most efficient jet-thrust. The method can be applied to airfoil shape optimization for bodies flying separately and in a multi-stage cascaded sequence. The method enables apparatuses for electricity harvesting from the fluid heat-energy, providing a positive net-efficiency. The method enables efficient water-harvesting from air.
    Type: Application
    Filed: July 13, 2017
    Publication date: November 2, 2017
    Inventor: Yuri ABRAMOV
  • Publication number: 20170206291
    Abstract: The invention provides a method for computational fluid dynamics and apparatuses making enable an efficient implementation and use of an enhanced jet-effect, triggered by a specifically shaped tunnel, and of a hydrophobic jet-effect, triggered by a hydrophobic corpus. The method is based on the approaches of the kinetic theory of matter, thermodynamics, and continuum mechanics, providing generalized equations of fluid motion. The method is applicable for slow-flowing as well as fast-flowing real compressible-extendable fluids and enables optimal design of convergent-divergent nozzles, providing for the most efficient jet-effect at subsonic, transonic, supersonic and hypersonic velocities. The method can be applied to airfoil shape optimization for bodies flying separately and in a multi-stage cascaded sequence. The method enables a design of a flying-saucer of high mobility. The method enables apparatuses for electricity harvesting from the fluid heat-energy, providing a positive net-efficiency.
    Type: Application
    Filed: January 19, 2017
    Publication date: July 20, 2017
    Inventor: Yuri ABRAMOV
  • Patent number: 8268030
    Abstract: The invention provides wind energy use. One application provides wind energy use for water harvesting from natural humid air. The method is based on changing thermodynamic state parameters of ambient wind air portions passed through a device comprising convergent-divergent and wing-like components. Those components transform the ambient wind portions into fast and cooled outflowing air portions. A decrease in static pressure and temperature triggers condensation of water-vapor into water-aerosols. Another application of the method provides an effective mechanism for harvesting electrical energy from naturally warm air using renewable wind energy, including the wind inertia, internal heat, and potential energy stored in the air mass in the Earth's gravitational field. The electrical energy harvesting mechanism is also applicable to use of natural renewable energy of streaming water.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 18, 2012
    Inventor: Yuri Abramov
  • Patent number: 8221514
    Abstract: The invention provides an ecologically clean method and apparatus for water harvesting from air. The method is based on changing of thermodynamic state properties of air wind getting a rotation and passing through convergent-divergent nozzles. The apparatus is a water condensation engine exposed to humid wind. The constructive solution has no moving solid parts, and the incoming wind is an inherent moving component of the engine. It comprises a cascade of sequentially arranged horn-tubes and a set of stationary wing-like details. Those horn-tubes transform the wind into a fast and cooled out-flowing air flux coming-and-hitting upon the set of wing-like details, where the air portions are accelerated and eddying. The inner static pressure and temperature decrease in the air portions. The decrease in static pressure and temperature triggers off condensation of water-vapors into water-aerosols.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: July 17, 2012
    Assignee: Yuri Abramov
    Inventor: Yuri Abramov
  • Publication number: 20120128496
    Abstract: The invention provides wind energy use. One application provides wind energy use for water harvesting from natural humid air. The method is based on changing thermodynamic state properties of ambient airborne wind passed through a convergent-divergent system. The device comprises a cascade of sequentially arranged wind converging and wing-like components. Those components transform the wind into fast, cooled, out-flowing air portions. The decrease in static pressure and temperature triggers condensation of water-vapor into water-aerosols. Another application of the method provides an effective mechanism for harvesting electrical energy from naturally warm air using renewable wind energy, including the wind inertia, internal heat, and potential energy stored in the air mass in the Earth's gravitational field. The electrical energy harvesting mechanism is also applicable to use of natural renewable energy of streaming water.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 24, 2012
    Inventor: Yuri Abramov
  • Publication number: 20120114493
    Abstract: The invention provides wind energy use. One application provides wind energy use for water harvesting from natural humid air. The method is based on changing thermodynamic state parameters of ambient wind air portions passed through a device comprising convergent-divergent and wing-like components. Those components transform the ambient wind portions into fast and cooled outflowing air portions. A decrease in static pressure and temperature triggers condensation of water-vapor into water-aerosols. Another application of the method provides an effective mechanism for harvesting electrical energy from naturally warm air using renewable wind energy, including the wind inertia, internal heat, and potential energy stored in the air mass in the Earth's gravitational field. The electrical energy harvesting mechanism is also applicable to use of natural renewable energy of streaming water.
    Type: Application
    Filed: December 20, 2011
    Publication date: May 10, 2012
    Inventor: Yuri ABRAMOV