Patents by Inventor Yuri Bunimovich

Yuri Bunimovich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10305014
    Abstract: Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires are described. The thermal conductivity and the thermoelectric power are controlled substantially independently of the electrical conductivity of the nanowires by controlling dimensions and doping, respectively, of the nanowires. A thermoelectric device comprising p-doped and n-doped semiconductor nanowire thermocouples is also shown, together with a method to fabricate alternately p-doped and n-doped arrays of silicon nanowires.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: May 28, 2019
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Akram Boukai, Yuri Bunimovich, William A. Goddard, James R. Heath, Jamil Tahir-Kheli
  • Publication number: 20160111620
    Abstract: Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires are described. The thermal conductivity and the thermoelectric power are controlled substantially independently of the electrical conductivity of the nanowires by controlling dimensions and doping, respectively, of the nanowires. A thermoelectric device comprising p-doped and n-doped semiconductor nanowire thermocouples is also shown, together with a method to fabricate alternately p-doped and n-doped arrays of silicon nanowires.
    Type: Application
    Filed: October 27, 2015
    Publication date: April 21, 2016
    Inventors: Akram BOUKAI, Yuri BUNIMOVICH, William A. GODDARD, James R. HEATH, Jamil TAHIR-KHELI
  • Patent number: 9209375
    Abstract: Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires are described. The thermal conductivity and the thermoelectric power are controlled substantially independently of the electrical conductivity of the nanowires by controlling dimensions and doping, respectively, of the nanowires. A thermoelectric device comprising p-doped and n-doped semiconductor nanowire thermocouples is also shown, together with a method to fabricate alternately p-doped and n-doped arrays of silicon nanowires.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: December 8, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Akram Boukai, Yuri Bunimovich, William A. Goddard, James R. Heath, Jamil Tahir-Kheli
  • Patent number: 8641912
    Abstract: A patterning method for the creation of two-dimensional nanowire structures. Nanowire patterning methods are used with lithographical patterning approaches to form patterns in a layer of epoxy and resist material. These patterns are then transferred to an underlying thin film to produce a two-dimensional structure with desired characteristics.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: February 4, 2014
    Assignee: California Institute of Technology
    Inventors: James R. Heath, Dunwei Wang, Yuri Bunimovich, Akram Boukai
  • Publication number: 20090117741
    Abstract: A patterning method for the creation of two-dimensional nanowire structures. Nanowire patterning methods are used with lithographical patterning approaches to form patterns in a layer of epoxy and resist material. These patterns are then transferred to an underlying thin film to produce a two-dimensional structure with desired characteristics.
    Type: Application
    Filed: May 21, 2008
    Publication date: May 7, 2009
    Inventors: James R. Heath, Dunwei Wang, Yuri Bunimovich, Akram Boukai
  • Publication number: 20090066348
    Abstract: A nanoelectronic device for detecting target molecules is described. The device has an array of nanoscale wires serving as sensors of target molecules and electrical contacts, electrically contacting the nanowires at end regions of the nanoscale wires. The end regions are covered with an insulating material. The insulating material also defines a window region of the nanoscale wires, not covered by the insulating material. Probe molecules are located on the nanoscale wires along the window region. A microfluidic channel can also be provided, to allow flow of the target molecules. A method of fabricating the nanoelectronic device is also shown and described.
    Type: Application
    Filed: August 29, 2007
    Publication date: March 12, 2009
    Inventors: Young Shik Shin, Michael Amori, Yuri Bunimovich, James H. Heath
  • Publication number: 20090020148
    Abstract: Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires are described. The thermal conductivity and the thermoelectric power are controlled substantially independently of the electrical conductivity of the nanowires by controlling dimensions and doping, respectively, of the nanowires. A thermoelectric device comprising p-doped and n-doped semiconductor nanowire thermocouples is also shown, together with a method to fabricate alternately p-doped and n-doped arrays of silicon nanowires.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 22, 2009
    Inventors: Akram BOUKAI, Yuri Bunimovich, William A. Goddard, James R. Heath, Jamil Tahir-Kheli
  • Patent number: 7416911
    Abstract: A method by which silicon nanostructures may be selectively coated with molecules or biomolecules using an electrochemical process. This chemical process may be employed as a method for coating many different nanostructures within a circuit, each with a different molecular or biomolecular material. The density of devices within a circuit of devices that can be coated with different molecules is limited only by the ability to electronically address each device separately. This invention has applications toward the fabrication of molecular electronic circuitry and toward the fabrication of nanoelectronic molecular sensor arrays.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: August 26, 2008
    Assignee: California Institute of Technology
    Inventors: James R. Heath, Yuri Bunimovich, Guanglu Ge, Kristen Beverly, John Nagarah, Michael Roukes, Peter Willis
  • Publication number: 20050032100
    Abstract: A method by which silicon nanostructures may be selectively coated with molecules or biomolecules using an electrochemical process. This chemical process may be employed as a method for coating many different nanostructures within a circuit, each with a different molecular or biomolecular material. The density of devices within a circuit of devices that can be coated with different molecules is limited only by the ability to electronically address each device separately. This invention has applications toward the fabrication of molecular electronic circuitry and toward the fabrication of nanoelectronic molecular sensor arrays.
    Type: Application
    Filed: June 23, 2004
    Publication date: February 10, 2005
    Applicant: California Institute of Technology
    Inventors: James Heath, Yuri Bunimovich, Guanglu Ge, Kristen Beverly, John Nagarah, Michael Roukes, Peter Willis