Patents by Inventor Yuri Kreinin

Yuri Kreinin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11823431
    Abstract: Disclosed are systems, devices, and methods for detecting a trachea, an exemplary system comprising an imaging device configured to obtain image data and a computing device configured to generate a three-dimensional (3D) model, identify a potential connected component in a first slice image, identify a potential connected component in a second slice image, label the first slice image as a top slice image, label the connected component in the top slice image as an active object, associate each connected component in a current slice image with a corresponding connected component in a previous slice image based on a connectivity criterion, label each connected component in the current slice image associated with a connected component of the preceding slice image as the active object, and identify the active object as the trachea, based on a length of the active object.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: November 21, 2023
    Assignee: Covidien LP
    Inventors: Igor A. Markov, Yuri Kreinin
  • Publication number: 20220284576
    Abstract: Disclosed are systems, devices, and methods for detecting a trachea, an exemplary system comprising an imaging device configured to obtain image data and a computing device configured to generate a three-dimensional (3D) model, identify a potential connected component in a first slice image, identify a potential connected component in a second slice image, label the first slice image as a top slice image, label the connected component in the top slice image as an active object, associate each connected component in a current slice image with a corresponding connected component in a previous slice image based on a connectivity criterion, label each connected component in the current slice image associated with a connected component of the preceding slice image as the active object, and identify the active object as the trachea, based on a length of the active object.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 8, 2022
    Inventors: Igor A. Markov, Yuri Kreinin
  • Patent number: 11361439
    Abstract: Disclosed are systems, devices, and methods for detecting a trachea, an exemplary system comprising an imaging device configured to obtain image data and a computing device configured to generate a three-dimensional (3D) model, identify a potential connected component in a first slice image, identify a potential connected component in a second slice image, label the first slice image as a top slice image, label the connected component in the top slice image as an active object, associate each connected component in a current slice image with a corresponding connected component in a previous slice image based on a connectivity criterion, label each connected component in the current slice image associated with a connected component of the preceding slice image as the active object, and identify the active object as the trachea, based on a length of the active object.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: June 14, 2022
    Assignee: Covidien LP
    Inventors: Igor A. Markov, Yuri Kreinin
  • Publication number: 20210104049
    Abstract: Disclosed are systems, devices, and methods for determining pleura boundaries of a lung, an exemplary method comprising acquiring image data from an imaging device, generating a set of two-dimensional (2D) slice images based on the acquired image data, determining, by a processor, a seed voxel in a first slice image from the set of 2D slice images, applying, by the processor, a region growing process to the first slice image from the set of 2D slice images starting with the seed voxel using a threshold value, generating, by the processor, a set of binarized 2D slice images based on the region grown from the seed voxel, filtering out, by the processor, connected components of the lung in each slice image of the set of binarized 2D slice images, and identifying, by the processor, the pleural boundaries of the lung based on the set of binarized 2D slice images.
    Type: Application
    Filed: December 16, 2020
    Publication date: April 8, 2021
    Inventors: Igor A. Markov, Yuri Kreinin
  • Publication number: 20200410676
    Abstract: Disclosed are systems, devices, and methods for detecting a trachea, an exemplary system comprising an imaging device configured to obtain image data and a computing device configured to generate a three-dimensional (3D) model, identify a potential connected component in a first slice image, identify a potential connected component in a second slice image, label the first slice image as a top slice image, label the connected component in the top slice image as an active object, associate each connected component in a current slice image with a corresponding connected component in a previous slice image based on a connectivity criterion, label each connected component in the current slice image associated with a connected component of the preceding slice image as the active object, and identify the active object as the trachea, based on a length of the active object.
    Type: Application
    Filed: September 10, 2020
    Publication date: December 31, 2020
    Inventors: Igor A. Markov, Yuri Kreinin
  • Patent number: 10878573
    Abstract: Disclosed are systems, devices, and methods for determining pleura boundaries of a lung, an exemplary method comprising acquiring image data from an imaging device, generating a set of two-dimensional (2D) slice images based on the acquired image data, determining, by a processor, a seed voxel in a first slice image from the set of 2D slice images, applying, by the processor, a region growing process to the first slice image from the set of 2D slice images starting with the seed voxel using a threshold value, generating, by the processor, a set of binarized 2D slice images based on the region grown from the seed voxel, filtering out, by the processor, connected components of the lung in each slice image of the set of binarized 2D slice images, and identifying, by the processor, the pleural boundaries of the lung based on the set of binarized 2D slice images.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: December 29, 2020
    Assignee: COVIDIEN LP
    Inventors: Igor A. Markov, Yuri Kreinin
  • Patent number: 10776914
    Abstract: Disclosed are systems, devices, and methods for detecting a trachea, an exemplary system comprising an imaging device configured to obtain image data and a computing device configured to generate a three-dimensional (3D) model, identify a potential connected component in a first slice image, identify a potential connected component in a second slice image, label the first slice image as a top slice image, label the connected component in the top slice image as an active object, associate each connected component in a current slice image with a corresponding connected component in a previous slice image based on a connectivity criterion, label each connected component in the current slice image associated with a connected component of the preceding slice image as the active object, and identify the active object as the trachea, based on a length of the active object.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: September 15, 2020
    Assignee: COVIDIEN LP
    Inventors: Igor A. Markov, Yuri Kreinin
  • Patent number: 10249045
    Abstract: A technique for automatically generating a virtual model of a branched structure using as an input a plurality of images taken of the branched structure. The technique employs an algorithm that avoids inaccuracies associated with sub-optimal threshold settings by “patching” holes or leaks created due to the inherent inconsistencies with imaging technology. By “patching” the holes, the algorithm may continue to run using a more sensitive threshold value than was previously possible.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: April 2, 2019
    Assignee: COVIDIEN LP
    Inventors: Dorian Averbuch, Yuri Kreinin
  • Publication number: 20190019294
    Abstract: Disclosed are systems, devices, and methods for determining pleura boundaries of a lung, an exemplary method comprising acquiring image data from an imaging device, generating a set of two-dimensional (2D) slice images based on the acquired image data, determining, by a processor, a seed voxel in a first slice image from the set of 2D slice images, applying, by the processor, a region growing process to the first slice image from the set of 2D slice images starting with the seed voxel using a threshold value, generating, by the processor, a set of binarized 2D slice images based on the region grown from the seed voxel, filtering out, by the processor, connected components of the lung in each slice image of the set of binarized 2D slice images, and identifying, by the processor, the pleural boundaries of the lung based on the set of binarized 2D slice images.
    Type: Application
    Filed: September 7, 2018
    Publication date: January 17, 2019
    Inventors: IGOR A. MARKOV, YURI KREININ
  • Publication number: 20180286042
    Abstract: Disclosed are systems, devices, and methods for detecting a trachea, an exemplary system comprising an imaging device configured to obtain image data and a computing device configured to generate a three-dimensional (3D) model, identify a potential connected component in a first slice image, identify a potential connected component in a second slice image, label the first slice image as a top slice image, label the connected component in the top slice image as an active object, associate each connected component in a current slice image with a corresponding connected component in a previous slice image based on a connectivity criterion, label each connected component in the current slice image associated with a connected component of the preceding slice image as the active object, and identify the active object as the trachea, based on a length of the active object.
    Type: Application
    Filed: June 4, 2018
    Publication date: October 4, 2018
    Inventors: IGOR A. MARKOV, YURI KREININ
  • Patent number: 10074185
    Abstract: Disclosed are systems, devices, and methods for determining pleura boundaries of a lung, an exemplary method comprising acquiring image data from an imaging device, generating a set of two-dimensional (2D) slice images based on the acquired image data, determining, by a processor, a seed voxel in a first slice image from the set of 2D slice images, applying, by the processor, a region growing process to the first slice image from the set of 2D slice images starting with the seed voxel using a threshold value, generating, by the processor, a set of binarized 2D slice images based on the region grown from the seed voxel, filtering out, by the processor, connected components of the lung in each slice image of the set of binarized 2D slice images, and identifying, by the processor, the pleural boundaries of the lung based on the set of binarized 2D slice images.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: September 11, 2018
    Assignee: COVIDIEN LP
    Inventors: Igor A. Markov, Yuri Kreinin
  • Patent number: 9990721
    Abstract: Disclosed are systems, devices, and methods for detecting a trachea, an exemplary system comprising an imaging device configured to obtain image data and a computing device configured to generate a three-dimensional (3D) model, identify a potential connected component in a first slice image, identify a potential connected component in a second slice image, label the first slice image as a top slice image, label the connected component in the top slice image as an active object, associate each connected component in a current slice image with a corresponding connected component in a previous slice image based on a connectivity criterion, label each connected component in the current slice image associated with a connected component of the preceding slice image as the active object, and identify the active object as the trachea, based on a length of the active object.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: June 5, 2018
    Assignee: COVIDIEN LP
    Inventors: Igor A. Markov, Yuri Kreinin
  • Publication number: 20180089837
    Abstract: A technique for automatically generating a virtual model of a branched structure using as an input a plurality of images taken of the branched structure. The technique employs an algorithm that avoids inaccuracies associated with sub-optimal threshold settings by “patching” holes or leaks created due to the inherent inconsistencies with imaging technology. By “patching” the holes, the algorithm may continue to run using a more sensitive threshold value than was previously possible.
    Type: Application
    Filed: December 1, 2017
    Publication date: March 29, 2018
    Inventors: Dorian AVERBUCH, Yuri KREININ
  • Publication number: 20180075607
    Abstract: Disclosed are systems, devices, and methods for determining pleura boundaries of a lung, an exemplary method comprising acquiring image data from an imaging device, generating a set of two-dimensional (2D) slice images based on the acquired image data, determining, by a processor, a seed voxel in a first slice image from the set of 2D slice images, applying, by the processor, a region growing process to the first slice image from the set of 2D slice images starting with the seed voxel using a threshold value, generating, by the processor, a set of binarized 2D slice images based on the region grown from the seed voxel, filtering out, by the processor, connected components of the lung in each slice image of the set of binarized 2D slice images, and identifying, by the processor, the pleural boundaries of the lung based on the set of binarized 2D slice images.
    Type: Application
    Filed: November 10, 2017
    Publication date: March 15, 2018
    Inventors: IGOR A. MARKOV, YURI KREININ
  • Publication number: 20170365056
    Abstract: Disclosed are systems, devices, and methods for detecting a trachea, an exemplary system comprising an imaging device configured to obtain image data and a computing device configured to generate a three-dimensional (3D) model, identify a potential connected component in a first slice image, identify a potential connected component in a second slice image, label the first slice image as a top slice image, label the connected component in the top slice image as an active object, associate each connected component in a current slice image with a corresponding connected component in a previous slice image based on a connectivity criterion, label each connected component in the current slice image associated with a connected component of the preceding slice image as the active object, and identify the active object as the trachea, based on a length of the active object.
    Type: Application
    Filed: August 9, 2017
    Publication date: December 21, 2017
    Inventors: IGOR A. MARKOV, YURI KREININ
  • Patent number: 9836850
    Abstract: A technique for automatically generating a virtual model of a branched structure using as an input a plurality of images taken of the branched structure. The technique employs an algorithm that avoids inaccuracies associated with sub-optimal threshold settings by “patching” holes or leaks created due to the inherent inconsistencies with imaging technology. By “patching” the holes, the algorithm may continue to run using a more sensitive threshold value than was previously possible.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: December 5, 2017
    Assignee: COVIDIEN LP
    Inventors: Dorian Averbuch, Yuri Kreinin
  • Patent number: 9836848
    Abstract: Disclosed are systems, devices, and methods for determining pleura boundaries of a lung, an exemplary method comprising acquiring image data from an imaging device, generating a set of two-dimensional (2D) slice images based on the acquired image data, determining, by a processor, a seed voxel in a first slice image from the set of 2D slice images, applying, by the processor, a region growing process to the first slice image from the set of 2D slice images starting with the seed voxel using a threshold value, generating, by the processor, a set of binarized 2D slice images based on the region grown from the seed voxel, filtering out, by the processor, connected components of the lung in each slice image of the set of binarized 2D slice images, and identifying, by the processor, the pleural boundaries of the lung based on the set of binarized 2D slice images.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: December 5, 2017
    Assignee: COVIDIEN LP
    Inventors: Igor A. Markov, Yuri Kreinin
  • Patent number: 9741115
    Abstract: Disclosed are systems, devices, and methods for detecting a trachea, an exemplary system comprising an imaging device configured to obtain image data and a computing device configured to generate a three-dimensional (3D) model, identify a potential connected component in a first slice image, identify a potential connected component in a second slice image, label the first slice image as a top slice image, label the connected component in the top slice image as an active object, associate each connected component in a current slice image with a corresponding connected component in a previous slice image based on a connectivity criterion, label each connected component in the current slice image associated with a connected component of the preceding slice image as the active object, and identify the active object as the trachea, based on a length of the active object.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: August 22, 2017
    Assignee: COVIDIEN LP
    Inventors: Igor A. Markov, Yuri Kreinin
  • Publication number: 20170161908
    Abstract: A technique for automatically generating a virtual model of a branched structure using as an input a plurality of images taken of the branched structure. The technique employs an algorithm that avoids inaccuracies associated with sub-optimal threshold settings by “patching” holes or leaks created due to the inherent inconsistencies with imaging technology. By “patching” the holes, the algorithm may continue to run using a more sensitive threshold value than was previously possible.
    Type: Application
    Filed: February 21, 2017
    Publication date: June 8, 2017
    Inventors: DORIAN AVERBUCH, YURI KREININ
  • Publication number: 20170103531
    Abstract: Disclosed are systems, devices, and methods for detecting a trachea, an exemplary system comprising an imaging device configured to obtain image data and a computing device configured to generate a three-dimensional (3D) model, identify a potential connected component in a first slice image, identify a potential connected component in a second slice image, label the first slice image as a top slice image, label the connected component in the top slice image as an active object, associate each connected component in a current slice image with a corresponding connected component in a previous slice image based on a connectivity criterion, label each connected component in the current slice image associated with a connected component of the preceding slice image as the active object, and identify the active object as the trachea, based on a length of the active object.
    Type: Application
    Filed: December 19, 2016
    Publication date: April 13, 2017
    Inventors: IGOR A. MARKOV, YURI KREININ