Patents by Inventor Yuri Tkachev

Yuri Tkachev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230101585
    Abstract: A method of testing non-volatile memory cells formed on a die includes erasing the memory cells and performing a first read operation to determine a lowest read current RC1 for the memory cells and a first number N1 of the memory cells having the lowest read current RC1. A second read operation is performed to determine a second number N2 of the memory cells having a read current not exceeding a target read current RC2. The target read current RC2 is equal to the lowest read current RC1 plus a predetermined current value. The die is determined to be acceptable if the second number N2 is determined to exceed the first number N1 plus a predetermined number. The die is determined to be defective if the second number N2 is determined not to exceed the first number N1 plus the predetermined number.
    Type: Application
    Filed: January 14, 2022
    Publication date: March 30, 2023
    Inventors: Yuri Tkachev, JINHO KIM, CYNTHIA FUNG, GILLES FESTES, BERNARD BERTELLO, PARVIZ GHAZAVI, BRUNO VILLARD, JEAN FRANCOIS THIERY, CATHERINE DECOBERT, SERGUEI JOURBA, FAN LUO, LATT TEE, NHAN DO
  • Publication number: 20220336020
    Abstract: Examples for ultra-precise tuning of a selected memory cell are disclosed. In one example, a method of programming a first memory cell in a neural memory to a target value is disclosed, the method comprising programming a second memory cell by applying programming voltages to terminals of the second memory cell; and determining if an output of the first memory cell has reached the target value.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 20, 2022
    Inventors: Steven Lemke, Hieu Van Tran, Yuri Tkachev, Louisa Schneider, Henry A. Om'mani, Thuan Vu, Nhan Do, Vipin Tiwari
  • Patent number: 11393535
    Abstract: Embodiments for ultra-precise tuning of a selected memory cell are disclosed. The selected memory cell optionally is first programmed using coarse programming and fine programming methods. The selected memory cell then undergoes ultra-precise programming through the programming of an adjacent memory cell. As the adjacent memory cell is programmed, capacitive coupling between the floating gate of the adjacent memory cell and the floating gate of the selected memory cell will cause the voltage of the floating gate of the selected memory cell to increase, but in smaller increments than could be achieved by programming the selected memory cell directly. In this manner, the selected memory cell can be programmed with ultra-precise gradations.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: July 19, 2022
    Assignee: SILICON STORAGE TECHNOLOGY, INC.
    Inventors: Steven Lemke, Hieu Van Tran, Yuri Tkachev, Louisa Schneider, Henry A. Om'Mani, Thuan Vu, Nhan Do, Vipin Tiwari
  • Patent number: 11362218
    Abstract: A memory device includes a semiconductor substrate with memory cell and logic regions. A floating gate is disposed over the memory cell region and has an upper surface terminating in opposing front and back edges and opposing first and second side edges. An oxide layer has a first portion extending along the logic region and a first thickness, a second portion extending along the memory cell region and has the first thickness, and a third portion extending along the front edge with the first thickness and extending along a tunnel region portion of the first side edge with a second thickness less than the first thickness. A control gate has a first portion disposed on the oxide layer second portion and a second portion vertically over the front edge and the tunnel region portion of the first side edge. A logic gate is disposed on the oxide layer first portion.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: June 14, 2022
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Jinho Kim, Elizabeth Cuevas, Yuri Tkachev, Parviz Ghazavi, Bernard Bertello, Gilles Festes, Bruno Villard, Catherine Decobert, Nhan Do, Jean Francois Thiery
  • Publication number: 20210399127
    Abstract: A memory device includes a semiconductor substrate with memory cell and logic regions. A floating gate is disposed over the memory cell region and has an upper surface terminating in opposing front and back edges and opposing first and second side edges. An oxide layer has a first portion extending along the logic region and a first thickness, a second portion extending along the memory cell region and has the first thickness, and a third portion extending along the front edge with the first thickness and extending along a tunnel region portion of the first side edge with a second thickness less than the first thickness. A control gate has a first portion disposed on the oxide layer second portion and a second portion vertically over the front edge and the tunnel region portion of the first side edge. A logic gate is disposed on the oxide layer first portion.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 23, 2021
    Inventors: Jinho Kim, Elizabeth Cuevas, Yuri Tkachev, Parviz Ghazavi, Bernard Bertello, Gilles Festes, Bruno Villard, Catherine Decobert, Nhan Do, Jean Francois Thiery
  • Publication number: 20210264983
    Abstract: Embodiments for ultra-precise tuning of a selected memory cell are disclosed. The selected memory cell optionally is first programmed using coarse programming and fine programming methods. The selected memory cell then undergoes ultra-precise programming through the programming of an adjacent memory cell. As the adjacent memory cell is programmed, capacitive coupling between the floating gate of the adjacent memory cell and the floating gate of the selected memory cell will cause the voltage of the floating gate of the selected memory cell to increase, but in smaller increments than could be achieved by programming the selected memory cell directly. In this manner, the selected memory cell can be programmed with ultra-precise gradations.
    Type: Application
    Filed: August 4, 2020
    Publication date: August 26, 2021
    Inventors: Steven Lemke, Hieu Van Tran, Yuri Tkachev, Louisa Schneider, Henry A. Om'Mani, Thuan Vu, Nhan Do, Vipin Tiwari
  • Patent number: 11018147
    Abstract: A method of forming a memory device includes forming a floating gate on a memory cell area of a semiconductor substrate, having an upper surface terminating in an edge. An oxide layer is formed having first and second portions extending along the logic and memory cell regions of the substrate surface, respectively, and a third portion extending along the floating gate edge. A non-conformal layer is formed having a first, second and third portions covering the oxide layer first, second and third portions, respectively. An etch removes the non-conformal layer third portion, and thins but does not entirely remove the non-conformal layer first and second portions. An etch reduces the thickness of the oxide layer third portion. After removing the non-conformal layer first and second portions, a control gate is formed on the oxide layer second portion and a logic gate is formed on the oxide layer first portion.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: May 25, 2021
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Jinho Kim, Elizabeth Cuevas, Parviz Ghazavi, Bernard Bertello, Gilles Festes, Catherine Decobert, Yuri Tkachev, Bruno Villard, Nhan Do
  • Patent number: 10714489
    Abstract: A memory device with a memory cell and control circuitry. The memory cell includes source and drain regions formed in a semiconductor substrate, with a channel region extending there between. A floating gate is disposed over a first portion of the channel region for controlling its conductivity. A select gate is disposed over a second portion of the channel region for controlling its conductivity. A control gate is disposed over the floating gate. An erase gate is disposed over the source region and adjacent to the floating gate. The control circuitry is configured to perform a program operation by applying a negative voltage to the erase gate for causing electrons to tunnel from the erase gate to the floating gate, and perform an erase operation by applying a positive voltage to the erase gate for causing electrons to tunnel from the floating gate to the erase gate.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: July 14, 2020
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Yuri Tkachev, Alexander Kotov, Nhan Do
  • Publication number: 20200066738
    Abstract: A memory device with a memory cell and control circuitry. The memory cell includes source and drain regions formed in a semiconductor substrate, with a channel region extending there between. A floating gate is disposed over a first portion of the channel region for controlling its conductivity. A select gate is disposed over a second portion of the channel region for controlling its conductivity. A control gate is disposed over the floating gate. An erase gate is disposed over the source region and adjacent to the floating gate. The control circuitry is configured to perform a program operation by applying a negative voltage to the erase gate for causing electrons to tunnel from the erase gate to the floating gate, and perform an erase operation by applying a positive voltage to the erase gate for causing electrons to tunnel from the floating gate to the erase gate.
    Type: Application
    Filed: December 4, 2018
    Publication date: February 27, 2020
    Inventors: Yuri Tkachev, Alexander Kotov, Nhan Do
  • Patent number: 9633735
    Abstract: A system and method to inhibit the erasing of a portion of a sector of split gate flash memory cells while allowing the remainder of the sector to be erased is disclosed. The inhibiting is controlled by control logic that applies one or more bias voltages to the portion of the sector whose erasure is to be inhibited.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: April 25, 2017
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Jinho Kim, Nhan Do, Yuri Tkachev, Kai Man Yue, Xiaozhou Qian, Ning Bai
  • Patent number: 9466732
    Abstract: A memory device having a substrate of semiconductor material of a first conductivity type, first and second spaced-apart regions in the substrate of a second conductivity type, with a channel region in the substrate therebetween, a conductive floating gate over and insulated from the substrate, wherein the floating gate is disposed at least partially over the first region and a first portion of the channel region, a conductive second gate laterally adjacent to and insulated from the floating gate, wherein the second gate is disposed at least partially over and insulated from a second portion of the channel region, and wherein at least a portion of the channel region first portion is of the second conductivity type.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: October 11, 2016
    Assignee: SILICON STORAGE TECHNOLOGY, INC.
    Inventor: Yuri Tkachev
  • Patent number: 9275748
    Abstract: A method of reading a memory device having rows and columns of memory cells formed on a substrate, where each memory cell includes spaced apart first and second regions with a channel region therebetween, a floating gate disposed over a first portion of the channel region, a select gate disposed over a second portion of the channel region, a control gate disposed over the floating gate, and an erase gate disposed over the first region. The method includes placing a small positive voltage on the unselected source lines, and/or a small negative voltage on the unselected word lines, during the read operation to suppress sub-threshold leakage and thereby improve read performance.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: March 1, 2016
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Nhan Do, Steven Malcolm Lemke, Jinho Kim, Jong-Won Yoo, Alexander Kotov, Yuri Tkachev
  • Publication number: 20160027517
    Abstract: A system and method to inhibit the erasing of a portion of a sector of split gate flash memory cells while allowing the remainder of the sector to be erased is disclosed. The inhibiting is controlled by control logic that applies one or more bias voltages to the portion of the sector whose erasure is to be inhibited.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 28, 2016
    Inventors: Jinho Kim, Nhan Do, Yuri Tkachev, Kai Man Yue, Xiaozhou Qian, Ning Bai
  • Patent number: 9245638
    Abstract: A method of operating a memory cell that comprises first and second regions spaced apart in a substrate with a channel region therebetween, a floating gate disposed over the channel region and the fir region, a control gate disposed over the channel region and laterally adjacent to the floating gate with a portion disposed over the floating gate, and a coupling gate disposed over the first region and laterally adjacent to the floating gate. A method of erasing the memory cell includes applying a positive voltage to the control gate and a negative voltage to the coupling gate. A method of reading the memory cell includes applying positive voltages to the control gate, to the coupling gate, and to one of the first and second regions.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: January 26, 2016
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Nhan Do, Elizabeth A. Cuevas, Yuri Tkachev, Mandana Tadayoni, Henry A. Om'mani
  • Patent number: 9123822
    Abstract: A non-volatile memory cell includes a substrate of a first conductivity type with first and second spaced apart regions of a second conductivity type, forming a channel region therebetween. A select gate is insulated from and disposed over a first portion of the channel region which is adjacent to the first region. A floating gate is insulated from and disposed over a second portion of the channel region which is adjacent the second region. Metal material is formed in contact with the floating gate. A control gate is insulated from and disposed over the floating gate. An erase gate includes a first portion insulated from and disposed over the second region and is insulated from and disposed laterally adjacent to the floating gate, and a second portion insulated from and laterally adjacent to the control gate and partially extends over and vertically overlaps the floating gate.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: September 1, 2015
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Jong-Won Yoo, Alexander Kotov, Yuri Tkachev, Chien-Sheng Su
  • Publication number: 20150035040
    Abstract: A non-volatile memory cell includes a substrate of a first conductivity type with first and second spaced apart regions of a second conductivity type, forming a channel region therebetween. A select gate is insulated from and disposed over a first portion of the channel region which is adjacent to the first region. A floating gate is insulated from and disposed over a second portion of the channel region which is adjacent the second region. Metal material is formed in contact with the floating gate. A control gate is insulated from and disposed over the floating gate. An erase gate includes a first portion insulated from and disposed over the second region and is insulated from and disposed laterally adjacent to the floating gate, and a second portion insulated from and laterally adjacent to the control gate and partially extends over and vertically overlaps the floating gate.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Inventors: Jong-Won Yoo, Alexander Kotov, Yuri Tkachev, Chien-Sheng Su
  • Publication number: 20140269062
    Abstract: A method of reading a memory device having rows and columns of memory cells formed on a substrate, where each memory cell includes spaced apart first and second regions with a channel region therebetween, a floating gate disposed over a first portion of the channel region, a select gate disposed over a second portion of the channel region, a control gate disposed over the floating gate, and an erase gate disposed over the first region. The method includes placing a small positive voltage on the unselected source lines, and/or a small negative voltage on the unselected word lines, during the read operation to suppress sub-threshold leakage and thereby improve read performance.
    Type: Application
    Filed: February 25, 2014
    Publication date: September 18, 2014
    Applicant: Silicon Storage Technology, Inc.
    Inventors: Nhan Do, Steven Malcolm Lemke, Jinho Kim, Jong-Won Yoo, Alexander Kotov, Yuri Tkachev
  • Publication number: 20140198578
    Abstract: A method of operating a memory cell that comprises first and second regions spaced apart in a substrate with a channel region therebetween, a floating gate disposed over the channel region and the first region, a control gate disposed over the channel region and laterally adjacent to the floating gate with a portion disposed over the floating gate, and a coupling gate disposed over the first region and laterally adjacent to the floating gate. A method of erasing the memory cell includes applying a positive voltage to the control gate and a negative voltage to the coupling gate. A method of reading the memory cell includes applying positive voltages to the control gate, to the coupling gate, and to one of the first and second regions.
    Type: Application
    Filed: March 17, 2014
    Publication date: July 17, 2014
    Applicant: Silicon Storage Technology, Inc.
    Inventors: Nhan Do, Elizabeth A. Cuevas, Yuri Tkachev, Mandana Tadayoni, Henry A. Om'mani
  • Patent number: 8711636
    Abstract: A method of operating a memory cell that comprises first and second regions spaced apart in a substrate with a channel region therebetween, a floating gate disposed over the channel region and the first region, a control gate disposed over the channel region and laterally adjacent to the floating gate with a portion disposed over the floating gate, and a coupling gate disposed over the first region and laterally adjacent to the floating gate. A method of erasing the memory cell includes applying a positive voltage to the control gate and a negative voltage to the coupling gate. A method of reading the memory cell includes applying positive voltages to the control gate, to the coupling gate, and to one of the first and second regions.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: April 29, 2014
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Nhan Do, Elizabeth A. Cuevas, Yuri Tkachev, Mandana Tadayoni, Henry A. Om'Mani
  • Publication number: 20140054667
    Abstract: A memory device having a substrate of semiconductor material of a first conductivity type, first and second spaced-apart regions in the substrate of a second conductivity type, with a channel region in the substrate therebetween, a conductive floating gate over and insulated from the substrate, wherein the floating gate is disposed at least partially over the first region and a first portion of the channel region, a conductive second gate laterally adjacent to and insulated from the floating gate, wherein the second gate is disposed at least partially over and insulated from a second portion of the channel region, and wherein at least a portion of the channel region first portion is of the second conductivity type.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 27, 2014
    Inventor: Yuri Tkachev