Patents by Inventor Yuriko Kawamura

Yuriko Kawamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230258872
    Abstract: An optical module is provided with a columnar protrusion over the entire pickup area (EP) for automatic suction by a mounting device at the center of the upper surface of a fiber holding carrier. The protrusion secures a dedicated pickup area (EP1) on a top surface. When an extra length of an optical fiber extending from an optical device is routed and held between a pair of wall portions, the extra length including a tip portion is held in a storage area of the fiber holding carrier by a restoring force caused by being pressed against the wall portions. In this holding state, since the tip portion of the extra length can be disposed along the outer periphery of the protrusion, even in a case where the position where the optical fiber is held is slightly shifted by a shock from outside.
    Type: Application
    Filed: August 5, 2020
    Publication date: August 17, 2023
    Inventors: Yuriko Kawamura, Takashi Yamada, Yusuke Nasu, Yuichiro Ikuma
  • Publication number: 20230244045
    Abstract: In an integrated optoelectronic module according to the present disclosure, a heat dissipation path for an electric integrated circuit (IC) for signal processing, which consumes a relatively large amount of power, and a heat dissipation path for an electric IC for driving an optical circuit are separated from each other. The electric IC for driving an optical circuit is mounted on a connection surface of a photonic IC in the state in which a connection surface of the electric IC for driving an optical circuit faces the connection surface of the photonic IC. The electric IC for driving an optical circuit is housed in a depressed portion formed at a portion in a substrate on a connection surface side coupled to a photonic IC. The bottom portion of the depressed portion is thermally coupled to a non-connection surface of the electric IC for driving an optical circuit.
    Type: Application
    Filed: June 5, 2020
    Publication date: August 3, 2023
    Inventors: Yuriko Kawamura, Kiyofumi Kikuchi, Ken Tsuzuki
  • Publication number: 20230156932
    Abstract: A COSA as an optical communication component that can prevent energy radiated in a package from causing performance degradation includes a DC block capacitor that is mounted on an upper surface of the package and located at a position different from those of a SiP chip and an optical modulator driver IC to cut off a DC signal included in a RF signal to be transmitted to the IC and a lid provided over an upper portion of the package. A separation projecting portion of the lid projecting toward an upper surface of the package separately defines a region where the capacitor is present and a region where the SiP chip and the IC are present. The separation projecting portion is connected to GND of the package, and the lid is at a GND potential.
    Type: Application
    Filed: October 17, 2019
    Publication date: May 18, 2023
    Inventors: Ken Tsuzuki, Kiyofumi Kikuchi, Yuriko Kawamura
  • Patent number: 11592629
    Abstract: An object is to easily convey by suction an optical module equipped with optical fibers having ends coupled to optical receptacles and mount the optical module on a substrate. An optical module according to the present invention includes an optical device to which optical fibers having ends coupled to optical receptacles are optically coupled and also includes a carrier composed of a substrate and adhesive layers formed on the upper and lower surfaces of the substrate. The optical device is bonded on the adhesive layer formed on the lower surface of the substrate. Part of the optical fibers and the optical receptacles are bonded on the adhesive layer formed on the surface of the substrate.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: February 28, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yuriko Kawamura, Yusuke Nasu, Kiyofumi Kikuchi, Shunichi Soma
  • Patent number: 11567275
    Abstract: An optical module with optical fibers is intended to be able to be easily sucked and conveyed, and mounted on another substrate. An optical module of the present disclosure includes an optical device to which optical fibers are optically connected; and a carrier including a substrate and an adhesive layer formed at a surface of the substrate, and a part of the optical device and a part of the optical fibers are adhesively fixed on a surface of the adhesive layer. The optical device may include ball grid array shaped electrodes. The carrier may be provided with a plurality of holes.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: January 31, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yuriko Kawamura, Yusuke Nasu, Kiyofumi Kikuchi, Shunichi Soma
  • Publication number: 20220365377
    Abstract: An optical circuit of the present disclosure shares at least a part of an electrical path including phase variable means between neighboring optical interference circuits, or configures an electrical path so as to straddle neighboring optical interference circuits, thereby performing electrical or thermal feedback. The optical circuit includes a mechanism using the electrical or thermal feedback for cancelling components of thermal crosstalk from one optical interference circuit to another neighboring optical interference circuit. The optical circuit of the present disclosure has a resistor element that shares electrical paths including respective phase variable means between the neighboring optical interference circuits. The optical circuit changes the phase change amount by the phase variable means in the neighboring optical interference circuit, in such a way as to cancel the thermal crosstalk components by the resistor element.
    Type: Application
    Filed: June 24, 2019
    Publication date: November 17, 2022
    Inventors: Kiyofumi Kikuchi, Ken Tsuzuki, Yusuke Nasu, Yuichiro Ikuma, Kotaro Takeda, Yuriko Kawamura
  • Publication number: 20220357512
    Abstract: An optical module according to the present invention includes: an optical device including an optical waveguide chip; an optical fiber block bonded to and arranged on an end face of the optical waveguide chip; an optical fiber that has one end optically connected to the optical waveguide chip via the optical fiber block; an optical fiber holding mechanism for holding the other end of the optical fiber; and an optical fiber carrier. The optical fiber is arranged while being curved from the optical fiber carrier toward the optical fiber block in a U-shape, and a wall structure is formed on the surface of the carrier while being adjacent to the optical fiber at, for example, a position on the outer side of the U-shaped curve of the optical fiber position at which the wall structure reduces a normal force of the optical fiber.
    Type: Application
    Filed: July 1, 2019
    Publication date: November 10, 2022
    Inventors: Yuriko Kawamura, Takashi Yamada, Yusuke Nasu
  • Publication number: 20220066110
    Abstract: An object is to easily convey by suction an optical module equipped with optical fibers having ends coupled to optical receptacles and mount the optical module on a substrate. An optical module according to the present invention includes an optical device to which optical fibers having ends coupled to optical receptacles are optically coupled and also includes a carrier composed of a substrate and adhesive layers formed on the upper and lower surfaces of the substrate. The optical device is bonded on the adhesive layer formed on the lower surface of the substrate. Part of the optical fibers and the optical receptacles are bonded on the adhesive layer formed on the surface of the substrate.
    Type: Application
    Filed: January 7, 2020
    Publication date: March 3, 2022
    Inventors: Yuriko Kawamura, Yusuke Nasu, Kiyofumi Kikuchi, Shunichi Soma
  • Publication number: 20210382249
    Abstract: An optical module with optical fibers is intended to be able to be easily sucked and conveyed, and mounted on another substrate. An optical module of the present disclosure includes an optical device to which optical fibers are optically connected; and a carrier including a substrate and an adhesive layer formed at a surface of the substrate, and a part of the optical device and a part of the optical fibers are adhesively fixed on a surface of the adhesive layer. The optical device may include ball grid array shaped electrodes. The carrier may be provided with a plurality of holes.
    Type: Application
    Filed: August 14, 2019
    Publication date: December 9, 2021
    Inventors: Yuriko Kawamura, Yusuke Nasu, Kiyofumi Kikuchi, Shunichi Soma
  • Patent number: 10890787
    Abstract: The MZ type optical modulator of the invention includes: a Si optical modulator including an input optical waveguide, two arm waveguides branching and guiding light input from the input optical waveguide, an output optical waveguide combining the light guided through the two arm waveguides and outputting the combined light, two signal electrodes for applying radio frequency signals that are arranged in parallel to the two arm waveguides respectively, and a DC electrode for applying a bias voltage that is provided between the two signal electrodes; and at least one ground electrode arranged in parallel to the two signal electrodes.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: January 12, 2021
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yuriko Kawamura, Ken Tsuzuki, Kiyofumi Kikuchi
  • Patent number: 10852618
    Abstract: In a dual electrode Si optical modulator having a CPW electrode structure according to a related art, a phase difference of return currents propagating through two ground electrodes degrades the modulation frequency characteristic. To prevent this degradation, the modulator length has been shortened to terminate signal propagation before occurrence of a phase difference. However, a short modulator length would reduce an electric field applied to the optical waveguide, thus lowering the modulation efficiency. An optical modulator according to the present invention includes a bridge wiring that connects two ground electrodes, disposed between an RF electrode and an optical waveguide inside a substrate. The bridge wiring equalizes the potential between the two ground electrodes of the CPW, thereby eliminating a phase difference of return currents induced by a radio-frequency electrical signal to the RF electrode and propagating through the two ground electrodes.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: December 1, 2020
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Ken Tsuzuki, Yuriko Kawamura
  • Publication number: 20200292908
    Abstract: In a dual electrode Si optical modulator having a CPW electrode structure according to a related art, a phase difference of return currents propagating through two ground electrodes degrades the modulation frequency characteristic. To prevent this degradation, the modulator length has been shortened to terminate signal propagation before occurrence of a phase difference. However, a short modulator length would reduce an electric field applied to the optical waveguide, thus lowering the modulation efficiency. An optical modulator according to the present invention includes a bridge wiring that connects two ground electrodes, disposed between an RF electrode and an optical waveguide inside a substrate. The bridge wiring equalizes the potential between the two ground electrodes of the CPW, thereby eliminating a phase difference of return currents induced by a radio-frequency electrical signal to the RF electrode and propagating through the two ground electrodes.
    Type: Application
    Filed: March 14, 2017
    Publication date: September 17, 2020
    Inventors: Ken Tsuzuki, Yuriko Kawamura
  • Patent number: 10601522
    Abstract: An optical receiver is configured so as to be as less susceptible to noise as possible even in the case where high noise occurs inside an optical transceiver. The optical receiver includes a connection part that connects two photodiodes (PDs) constituting a dual photodiode and a transimpedance amplifier (TIA), wherein signal lines from the dual photodiode are surrounded by a conductor pattern that is not connected to each of the signal lines for each channel, and the conductor pattern is connected to a ground pattern on the transimpedance amplifier or a power source pattern for the PDs.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: March 24, 2020
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Toshihiro Itoh, Yuriko Kawamura, Kiyofumi Kikuchi, Ken Tsuzuki, Hiroshi Fukuda, Shin Kamei
  • Publication number: 20190181961
    Abstract: An optical receiver is configured so as to be as less susceptible to noise as possible even in the case where high noise occurs inside an optical transceiver. The optical receiver includes a connection part that connects two photodiodes (PDs) constituting a dual photodiode and a transimpedance amplifier (TIA), wherein signal lines from the dual photodiode are surrounded by a conductor pattern that is not connected to each of the signal lines for each channel, and the conductor pattern is connected to a ground pattern on the transimpedance amplifier or a power source pattern for the PDs.
    Type: Application
    Filed: June 19, 2017
    Publication date: June 13, 2019
    Inventors: Toshihiro Itoh, Yuriko Kawamura, Kiyofumi Kikuchi, Ken Tsuzuki, Hiroshi Fukuda, Shin Kamei
  • Publication number: 20190025615
    Abstract: The MZ type optical modulator of the invention includes: a Si optical modulator including an input optical waveguide, two arm waveguides branching and guiding light input from the input optical waveguide, an output optical waveguide combining the light guided through the two arm waveguides and outputting the combined light, two signal electrodes for applying radio frequency signals that are arranged in parallel to the two arm waveguides respectively, and a DC electrode for applying a bias voltage that is provided between the two signal electrodes; and at least one ground electrode arranged in parallel to the two signal electrodes.
    Type: Application
    Filed: March 16, 2017
    Publication date: January 24, 2019
    Inventors: Yuriko Kawamura, Ken Tsuzuki, Kiyofumi Kikuchi