Patents by Inventor Yury Gaknoki

Yury Gaknoki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9401634
    Abstract: A controller for use in a power converter includes logic circuits to turn on and off a switch to regulate an output quantity. A first integrating capacitor is charged with a combination of a first current and a second current while the switch is turned on. The first current is proportional to a reset voltage and the second current is proportional to an input voltage. A reference generation circuit including a second integrating capacitor is charged with the first current during a previous switching cycle of the switch. The reference generation circuit generates a reference voltage in response to the second integrating capacitor. A comparator provides a stop signal to the logic circuits to turn off the switch in response to a comparison of a voltage across the first integrating capacitor with the reference voltage.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: July 26, 2016
    Assignee: Power Integrations, Inc.
    Inventors: Yury Gaknoki, Mingming Mao, Robert J. Mayell
  • Patent number: 9391523
    Abstract: Methods and apparatuses are disclosed for generating a temperature independent current limit. The value of the temperature independent current limit may be determined based in part on an error signal representative of a difference between an actual output value and a desired output value of a power converter. When the error signal is below a lower threshold voltage, the temperature independent current limit may be set to a first value. When the error signal is above an upper threshold voltage, the temperature independent current limit may be set to a second, higher value. When the error signal is between the lower threshold voltage and the upper threshold voltage, the temperature independent current limit may change linearly with the error signal. The error signal may be adjusted to compensate for changes in the system caused by a change in temperature.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 12, 2016
    Assignee: Power Integrations, Inc.
    Inventors: Yury Gaknoki, Mingming Mao, Michael Y. Zhang
  • Publication number: 20160134189
    Abstract: A transient event detector includes a first reference generator, an adjustable low-pass filter, and a comparator. The first reference generator coupled to scale the input current signal to generate a first reference current signal that tracks the input current signal. The adjustable low-pass filter circuit is coupled to receive the input current signal and to generate a filtered input current signal such that a magnitude of a slope of the filtered input current signal is less than the magnitude of the slope of the input current signal during a transient event. The first comparator is coupled to generate an event detection signal that indicates the presence of the transient event in response to a value of the filtered input current signal reaching a value of the first reference current signal. The adjustable low-pass filter circuit is configured to increase the cutoff frequency in response to the event detection signal.
    Type: Application
    Filed: March 23, 2015
    Publication date: May 12, 2016
    Inventors: Ricardo Luis Janezic Pregitzer, Mingming Mao, Tiziano Pastore, Michael Yue Zhang, Yury Gaknoki
  • Publication number: 20160134187
    Abstract: A bleeder controller for controlling a magnitude of a variable current conducted by bleeder circuitry between input terminals of a device is disclosed. The magnitude of the variable current is controllable in response to a control signal. The bleeder controller includes a dimming detector to classify a half line cycle as leading-edge-dimmed or a trailing-edge-dimmed in response to at least one of an input current sense signal and an input voltage sense signal.
    Type: Application
    Filed: April 3, 2015
    Publication date: May 12, 2016
    Inventors: Ricardo Luis Janezic Pregitzer, Mingming Mao, Tiziano Pastore, Michael Yue Zhang, Yury Gaknoki
  • Publication number: 20160135257
    Abstract: Thermally protected bleeder circuits for maintaining an input current of a power converter above a dimmer circuit holding current are disclosed. In one example, a bleeder control circuit may generate a bleeder control signal to control a bleeder current of the bleeder circuit based on an input current signal and a temperature signal. The bleeder control circuit may cause the bleeder current to be substantially equal to zero in response to the input current signal being greater than or equal to a reference signal, and may cause the bleeder current to be proportional to a difference between the input current signal and the reference signal in response to the input current signal being less than the reference signal. The reference signal may be constant for temperatures less than a threshold temperature, but may decrease with respect to increases in temperature for temperatures greater than the threshold temperature.
    Type: Application
    Filed: June 4, 2015
    Publication date: May 12, 2016
    Inventors: Yury Gaknoki, Mingming Mao, Tiziano Pastore, Ricardo Luis Janezic Pregitzer, Michael Yue Zhang
  • Publication number: 20160111962
    Abstract: A power conversion device includes a power switch a first main terminal coupled to a higher potential portion, a second main terminal coupled to a lower potential portion, and a tap coupled to the first main terminal to provide a current for charging a supply terminal capacitor. A controller is coupled to a control terminal of the power switch to control switching of the power switch to produce a regulated output. A supply terminal is to be coupled to a supply terminal capacitor to store a charge for supplying power to at least some of the components of the controller. A voltage regulator is coupled to regulate the charge stored and a potential on the supply terminal capacitor. The current for charging the supply terminal capacitor is selectively drawn from the tap of the power switch in response to the supply terminal capacitor being below a threshold.
    Type: Application
    Filed: February 17, 2015
    Publication date: April 21, 2016
    Inventors: Mingming Mao, Michael Yue Zhang, Tiziano Pastore, Yury Gaknoki, Ricardo Luis Janezic Pregitzer
  • Patent number: 9320091
    Abstract: An example controller includes a measurement block and a drive block. The measurement block determines an amount of time that a dimmer circuit, that is coupled to an input of a power supply, disconnects an ac input voltage. The drive block generates a drive signal to control switching of a switch included in the power supply. The drive block operates a closed loop dimming control when the amount of time is less than or equal to a threshold and operates an open loop dimming control when the amount of time is greater than the threshold. The closed loop dimming control includes setting one or more operating conditions of the drive signal in response to a feedback signal that is representative of an output quantity of the power supply. The open loop dimming control includes holding the one or more operating conditions of the drive signal to a value.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: April 19, 2016
    Assignee: Power Integrations, Inc.
    Inventors: Yury Gaknoki, Mingming Mao
  • Patent number: 9287787
    Abstract: An example controller circuit includes a feedback sampling circuit, an oscillator, a drive logic, and a false sampling prevention circuit. The feedback sampling circuit generates a sample signal in response to a sampling of a feedback signal. The oscillator generates an on-time signal that transitions from a first logic state to a second logic state during each period of the on-time signal. The drive logic controls a switch to regulate the output of a power converter. The drive logic turns on the switch to end an off-time of the switch in response to the on-time signal transitioning from the first logic state to the second logic state. The false sampling prevention circuit prevents the on-time signal from transitioning from the first logic state to the second logic state to extend the off-time of the switch until a sampling complete signal indicates that sampling of the feedback signal is complete.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: March 15, 2016
    Assignee: Power Integrations, Inc.
    Inventors: Yury Gaknoki, David Kung, Michael Yue Zhang
  • Patent number: 9287784
    Abstract: Methods and apparatuses are disclosed for generating an adjustable bias current. The value of the adjustable bias current may be determined based in part on an error signal representative of a difference between an actual output value and a desired output value of a power converter. When the error signal is below a lower threshold voltage, the adjustable bias current may be set to a first value. When the error signal is above an upper threshold voltage, the adjustable bias current may be set to a second, higher value. When the error signal is between the lower threshold voltage and the upper threshold voltage, the adjustable bias current may change linearly with the error signal.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: March 15, 2016
    Assignee: Power Integrations, Inc.
    Inventors: Michael Zhang, Yury Gaknoki, Mingming Mao
  • Patent number: 9263934
    Abstract: An example controller for a power supply includes a first circuit and a drive signal generator. The first circuit receives a first signal representative of a switch current flowing through a switch of the power supply and then generates a second signal in response the switch current not reaching a current threshold within an amount of time. The second signal indicates when a dimming circuit at an input of the power supply is utilized. The drive signal generator generates a drive signal to control switching of the switch in response to the second signal, where energy is transferred across an energy transfer element of the power supply in response to the switching of the switch.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: February 16, 2016
    Assignee: Power Integrations, Inc.
    Inventors: Yury Gaknoki, Mingming Mao, Tiziano Pastore
  • Patent number: 9253832
    Abstract: A method of operation for flyback power converter includes operating a controller of the flyback power converter in a regulation mode when a control signal is below a first threshold. The control signal is provided as an input to a terminal of the flyback power converter. When the control signal is below a second threshold and above the first threshold, the controller is operated in a limiting mode. The controller is operated in an external command mode when the control signal is below a third threshold and above the second threshold. Lastly, when the control signal is above the third threshold, the controller is operated in a protection mode.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: February 2, 2016
    Assignee: Power Integrations, Inc.
    Inventors: Yury Gaknoki, Tiziano Pastore, Mingming Mao, David Michael Hugh Matthews
  • Patent number: 9178432
    Abstract: An example switched mode power supply includes a timer, a threshold adjust circuitry, a comparator, and a control circuitry. The timer times a duration between crossings of a phase-dimmed signal across a first threshold. The threshold adjust circuitry adjusts a second threshold representative of a desired output of the switched mode power supply, where the second threshold is adjusted responsive to the timed duration between crossings. The comparator compares a feedback signal with the second threshold and generates a comparison result. The control circuitry controls switching of a power switch responsive to the comparison result to regulate the output of the switched mode power supply.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: November 3, 2015
    Assignee: Power Integrations, Inc.
    Inventors: Yury Gaknoki, Mingming Mao, Tiziano Pastore
  • Patent number: 9093906
    Abstract: Methods and apparatuses are disclosed for providing improved feedback sampling in a primary-side regulated power converter. A test sample may be taken prior to the default feedback sample. The voltage of the test sample may be compared to the voltage of the default feedback sample to determine if the voltage difference between the two samples exceeds a threshold. If the default sample is lower than the test sample by more than the threshold, the default sample may be flagged as being a potential false sample. If more than a set number of potentially false samples are obtained, the power converter may enter an auto-restart mode.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: July 28, 2015
    Assignee: Power Integrations, Inc.
    Inventors: Guangchao (Darson) Zhang, Yury Gaknoki
  • Patent number: 9083251
    Abstract: A controller for a power converter includes a drive circuit coupled to generate a drive signal in response to an error signal representative of a load of the power converter. The drive circuit includes a pulse skipping circuit coupled to generate a blanking signal in response to the error signal. The pulse skipping circuit includes an enable circuit and a blanking circuit. The enable circuit is coupled to output an enable signal in response to the error signal. The blanking circuit is coupled to output the blanking signal in response to the enable signal and a ramp signal. The ramp signal is generated in response to the error signal. A duration of the blanking signal corresponds to a length of time for the ramp signal to reach a reference signal. The length of time is responsive to the error signal.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: July 14, 2015
    Assignee: Power Integrations, Inc.
    Inventors: Guangchao Darson Zhang, Yury Gaknoki, Mingming Mao
  • Patent number: 9036369
    Abstract: Methods and apparatuses for programming a parameter value in an IC (e.g., any power electronic device, such as a controller of a power converter) are disclosed. The parameter can be selected/programmed by selecting a clamp using an external optional (selectively inserted) diode coupled to a multi-function programming terminal. In particular, a controller IC for a power converter can be externally programmed via one or more multiple function terminals during startup of the converter to select between two or more options using the external programming terminal(s). Once programming is complete, internal programming circuitry may be decoupled from the programming terminal and during normal operation the programming terminal may then be used for another function, such as a bypass (BP) terminal to provide a supply voltage to the IC or other required functionalities.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 19, 2015
    Assignee: Power Integrations, Inc.
    Inventors: Robert Mayell, Yury Gaknoki, Mingming Mao
  • Publication number: 20140340945
    Abstract: A controller for a power converter includes a drive circuit coupled to generate a drive signal in response to an error signal representative of a load of the power converter. The drive circuit includes a pulse skipping circuit coupled to generate a blanking signal in response to the error signal. The pulse skipping circuit includes an enable circuit and a blanking circuit. The enable circuit is coupled to output an enable signal in response to the error signal. The blanking circuit is coupled to output the blanking signal in response to the enable signal and a ramp signal. The ramp signal is generated in response to the error signal. A duration of the blanking signal corresponds to a length of time for the ramp signal to reach a reference signal. The length of time is responsive to the error signal.
    Type: Application
    Filed: August 4, 2014
    Publication date: November 20, 2014
    Inventors: Guangchao Darson Zhang, Yury Gaknoki, Mingming Mao
  • Publication number: 20140328089
    Abstract: An example controller circuit includes a feedback sampling circuit, an oscillator, a drive logic, and a false sampling prevention circuit. The feedback sampling circuit generates a sample signal in response to a sampling of a feedback signal. The oscillator generates an on-time signal that transitions from a first logic state to a second logic state during each period of the on-time signal. The drive logic controls a switch to regulate the output of a power converter. The drive logic turns on the switch to end an off-time of the switch in response to the on-time signal transitioning from the first logic state to the second logic state. The false sampling prevention circuit prevents the on-time signal from transitioning from the first logic state to the second logic state to extend the off-time of the switch until a sampling complete signal indicates that sampling of the feedback signal is complete.
    Type: Application
    Filed: July 18, 2014
    Publication date: November 6, 2014
    Inventors: Yury Gaknoki, David Kung, Michael Yue Zhang
  • Patent number: 8867240
    Abstract: A controller for use in a power converter includes a comparator coupled to receive a signal representative of an output of the power converter. A counter is coupled to an output of the comparator to sample the output of the comparator a plurality of times within a period. A state machine is coupled to an output of the counter to control switching of the power converter according to one of a plurality of operating condition states in response to the output of the counter. The state machine is coupled to be updated at an end of the period.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: October 21, 2014
    Assignee: Power Integrations, Inc.
    Inventors: Yury Gaknoki, Mingming Mao, David Michael Hugh Matthews, Tiziano Pastore
  • Patent number: 8830102
    Abstract: An example digital-to-analog converter includes a reference scaling circuit receiving a first reference current and generating a second reference current. A first plurality of current sources is coupled to a summing node with a current of a first one of the first plurality of current sources proportional to the first reference current. A current of a second one of the first plurality of current sources is substantially equal to twice the current of the first one of the first plurality of current sources. A second plurality of current sources is coupled to the summing node. A current of a first one of the second plurality of current sources is proportional to the second reference current. A current of a second one of the second plurality of current sources is substantially equal to twice the current of the first one of the second plurality of current sources.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: September 9, 2014
    Assignee: Power Integrations, Inc.
    Inventor: Yury Gaknoki
  • Patent number: 8823353
    Abstract: A power converter control circuit includes a ramp signal circuit, a blanking circuit, and a pulse driver circuit. The ramp signal circuit provides a ramp signal in response to a power converter feedback signal and an enable signal. The blanking circuit provides a blanking signal in response to the ramp signal and a clock signal. The blanking signal is provided when both the ramp signal is increasing in value and the enable signal indicates a light load operating condition. The pulse driver circuit provides a power switch control pulse in accordance with the clock signal and in the absence of the blanking signal.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: September 2, 2014
    Assignee: Power Integrations, Inc.
    Inventors: Guangchao Zhang, Yury Gaknoki, Mingming Mao