Patents by Inventor Yu-Shan Lin

Yu-Shan Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977367
    Abstract: A command script editing method, a command script editor and a graphic user interface are provided. The command script editing method includes the following steps. The command node is edited according to at least one inputting action or at least one image identifying action performed on the operation frame when the command script editor is at an image editing mode. The command node is edited according to a setting content of at least one process action when the command script editor is at a process editing mode.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: May 7, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Chi Lin, Li-Hsin Yang, Yu-Shan Hsu
  • Publication number: 20240138326
    Abstract: A control method for preparing crop nutrient solution, applied in a regulating device, obtains growth data of crops, and determines a growth state of the crops according to the growth data of the crops. The proportion of the nutrient solution required by the crops is determined according to the growth states of the crops, and the culture solution is adjusted according to the proportion of the nutrient solution. After a preset time period, updated growth state of the crops is determined. When the culture solution does not meet the proportion of the nutrient solution corresponding to the updated growth state, the culture solution is adjusted again until the culture solution meet the proportion of the nutrient solution corresponding to the growth state of the crops.
    Type: Application
    Filed: March 28, 2023
    Publication date: May 2, 2024
    Inventors: YU-SHAN LIN, CHIEN-HAO SU, KAI-SIANG YOU, YAO-WEN TUNG
  • Publication number: 20240139262
    Abstract: The present disclosure relates to a complex probiotic composition and a method for improving exercise performance of a subject with low intrinsic aerobic exercise capacity. The complex probiotic composition, which includes Lactobacillus rhamnosus GKLC1, Bifidobacterium lactis GKK24 and Clostridium butyricum GKB7, administered to the subject with the low intrinsic aerobic exercise capacity in a continuation period, can effectively reduce serum lactic acid and serum urea nitrogen after aerobic exercise, reduce proportion of offal fat and/or increase liver and muscle glycogen contents, thereby being as an effective ingredient for preparation of various compositions.
    Type: Application
    Filed: October 13, 2023
    Publication date: May 2, 2024
    Inventors: Chin-Chu CHEN, Yen-Lien CHEN, Shih-Wei LIN, Yen-Po CHEN, Ci-Sian WANG, Yu-Hsin HOU, Yang-Tzu SHIH, Ching-Wen LIN, Ya-Jyun CHEN, Jia-Lin JIANG, You-Shan TSAI, Zi-He WU
  • Publication number: 20240133918
    Abstract: In a method for obtaining the equivalent oxide thickness of a dielectric layer, a first semiconductor capacitor including a first silicon dioxide layer and a second semiconductor capacitor including a second silicon dioxide layer are provided and a modulation voltage is applied to the semiconductor capacitors to measure a first scanning capacitance microscopic signal and a second scanning capacitance microscopic signal. According to the equivalent oxide thicknesses of the silicon dioxide layers and the scanning capacitance microscopic signals, an impedance ratio is calculated. The modulation voltage is applied to a third semiconductor capacitor including a dielectric layer to measure a third scanning capacitance microscopic signal. Finally, the equivalent oxide thickness of the dielectric layer is obtained according to the equivalent oxide thickness of the first silicon dioxide layer, the first scanning capacitance microscopic signal, third scanning capacitance microscopic signal, and the impedance ratio.
    Type: Application
    Filed: April 12, 2023
    Publication date: April 25, 2024
    Inventors: MAO-NAN CHANG, CHI-LUN LIU, HSUEH-LIANG CHOU, YI-SHAN WU, CHIAO-JUNG LIN, YU-HSUN HSUEH
  • Patent number: 11961939
    Abstract: A method of manufacturing a light-emitting device, including: providing a substrate structure including a top surface; forming a precursor layer on the top surface; removing a portion of the precursor layer and a portion of the substrate from the top surface to form a base portion and a plurality of protrusions regularly arranged on the base portion; forming a buffer layer on the base portion and the plurality protrusions; and forming a III-V compound cap layer on the buffer layer; wherein one of the plurality of protrusions comprises a first portion and a second portion formed on the first portion; wherein the first portion is integrated with the base portion and has a first material which is the same as that of the base portion; and wherein the buffer layer contacts side surfaces of the plurality of protrusions and a surface of the base portion.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: April 16, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Peng Ren Chen, Yu-Shan Chiu, Wen-Hsiang Lin, Shih-Wei Wang, Chen Ou
  • Patent number: 11961899
    Abstract: A semiconductor device includes a gate structure extending along a first lateral direction. The semiconductor device includes a source/drain structure disposed on one side of the gate structure along a second lateral direction, the second lateral direction perpendicular to the first lateral direction. The semiconductor device includes an air gap disposed between the gate structure and the source/drain structure along the second lateral direction, wherein the air gap is disposed over the source/drain structure.
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Yao Lin, Hsiao Wen Lee, Yu-Shan Cheng, Chao-Cheng Chen
  • Publication number: 20240079493
    Abstract: A semiconductor device and method of manufacturing the same are provided. The semiconductor device includes a substrate and a gate structure disposed on the substrate. The semiconductor device also includes a source region and a drain region disposed within the substrate. The substrate includes a drift region laterally extending between the source region and the drain region. The semiconductor device further includes a first stressor layer disposed over the drift region of the substrate. The first stressor layer is configured to apply a first stress to the drift region of the substrate. In addition, the semiconductor device includes a second stressor layer disposed on the first stressor layer. The second stressor layer is configured to apply a second stress to the drift region of the substrate, and the first stress is opposite to the second stress.
    Type: Application
    Filed: September 1, 2022
    Publication date: March 7, 2024
    Inventors: GUAN-QI CHEN, CHEN CHI HSIAO, KUN-TSANG CHUANG, FANG YI LIAO, YU SHAN HUNG, CHUN-CHIA CHEN, YU-SHAN HUANG, TUNG-I LIN
  • Publication number: 20220334167
    Abstract: A method for detecting defects in a GaN high electron mobility transistor is disclosed. The method includes steps of measuring a plurality of electrical characteristics of a GaN high electron mobility transistor, measuring the plurality of electrical characteristics after performing a deterioration test on the GaN high electron mobility transistor, irradiating the GaN high electron mobility transistor in turns with a plurality of light sources with different wavelengths and measuring the plurality of electrical characteristics after each irradiation of the GaN high electron mobility transistor by each of the plurality of light sources, and comparing changes of the plurality of electrical characteristics measured in the above steps to determine the defect location of the GaN high electron mobility transistor.
    Type: Application
    Filed: June 10, 2021
    Publication date: October 20, 2022
    Inventors: Ting-Chang CHANG, Hao-Xuan ZHENG, Yu-Shan LIN, Fu-Yuan JIN, Fong-Min CIOU, Mao-Chou TAI, Yun-Hsuan LIN, Wei-Chen HUANG, Wen-Chung CHEN
  • Publication number: 20220157978
    Abstract: A p-GaN high electron mobility transistor is disclosed. The p-GaN high electron mobility transistor includes a substrate, a channel layer located on the substrate, a supply layer laminated on the channel layer, and a doped layer laminated on the supply layer. A doping concentration of the doped layer is gradually distributed, in which the doping concentration in a first doped region close to the supply layer is lower than a doping concentration in a second doped region distant from the supply layer. A gate electrode is located on the doped layer. A source electrode and a drain electrode are respectively electrically connected to the channel layer and the supply layer.
    Type: Application
    Filed: November 26, 2020
    Publication date: May 19, 2022
    Inventors: Ting-Chang Chang, Hong-Chih Chen, Hao-Xuan Zheng, Yu-Shan Lin, Fu-Yuan Jin, Fong-Min Ciou, Yun-Hsuan Lin, Mao-Chou Tai, Wen-Chung Chen
  • Publication number: 20220123136
    Abstract: A GaN high electron mobility transistor is disclosed. The GaN high electron mobility transistor includes a substrate, a buffer layer located on the substrate, a barrier layer laminated on the buffer layer, a channel layer laminated on the barrier layer, a supply layer laminated on the channel layer. The barrier layer has either a p-type semiconductor or a wide band gap material. A gate electrode is located on the supply layer. A source electrode and a drain electrode are electrically connected to the channel layer and the supply layer.
    Type: Application
    Filed: March 15, 2021
    Publication date: April 21, 2022
    Inventors: Ting-Chang Chang, Hong-Chih Chen, Hao-Xuan Zheng, Yu-Shan Lin, Fu-Yuan Jin, Fong-Min Ciou, Yun-Hsuan Lin, Mao-Chou Tai, Wen-Chung Chen
  • Patent number: 11289592
    Abstract: A structure to increase the breakdown voltage of the high electron mobility transistor is provided to solve the problem of function loss under a high voltage state. The structure includes a substrate, a conducting layer located on the substrate, a gate insulating layer and an electric-field-dispersion layer. The upper portion of the conducting layer is an electron supply layer, and the lower portion of the conducting layer is an electron tunnel layer. The gate insulating layer is laminated on the electron supply layer. The electric-field-dispersion layer is laminated on the gate insulating layer. The dielectric constant of the electric-field-dispersion layer is smaller than that of the gate insulating layer. A gate electrode is located between the electric-field-dispersion layer and the gate insulating layer. A source and a drain electrodes are respectively electrically connected to the electric-field-dispersion layer, the gate insulating layer, the electron supply layer, and the electron tunnel layer.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: March 29, 2022
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Ting-Chang Chang, Yu-Ching Tsao, Yu-Lin Tsai, Po-Hsun Chen, Yu-Shan Lin, Wen-Chung Chen
  • Publication number: 20210367068
    Abstract: A structure to increase the breakdown voltage of the high electron mobility transistor is provided to solve the problem of function loss under a high voltage state. The structure includes a substrate, a conducting layer located on the substrate, a gate insulating layer and an electric-field-dispersion layer. The upper portion of the conducting layer is an electron supply layer, and the lower portion of the conducting layer is an electron tunnel layer. The gate insulating layer is laminated on the electron supply layer. The electric-field-dispersion layer is laminated on the gate insulating layer. The dielectric constant of the electric-field-dispersion layer is smaller than that of the gate insulating layer. A gate electrode is located between the electric-field-dispersion layer and the gate insulating layer. A source and a drain electrodes are respectively electrically connected to the electric-field-dispersion layer, the gate insulating layer, the electron supply layer, and the electron tunnel layer.
    Type: Application
    Filed: June 19, 2020
    Publication date: November 25, 2021
    Inventors: Ting-Chang Chang, Yu-Ching Tsao, Yu-Lin Tsai, Po-Hsun Chen, Yu-Shan Lin, Wen-Chung Chen
  • Patent number: 10401432
    Abstract: A rotary switch state detection device includes a magnetic field generating unit, a gravity sensing unit, a magnetic force sensing unit and a processing unit. The magnetic field generating unit generates a magnetic field. The magnetic force sensing unit and the gravity sensing unit are disposed at a rotary switch to detect a gravity value and a magnetic force value of the magnetic field and generate a gravity strength signal and magnetic field strength signal, respectively. The processing unit is connected to the gravity sensing unit and the magnetic force sensing unit to calculate a gravity value variation and a magnetic force value variation and thereby precisely locate a rotation head of the rotary switch upon completion of rotation thereof.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: September 3, 2019
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Yu-Shan Lin, Jun-Liang Zhu, Tung-Jung Hsu, Chao-Tse Hong
  • Patent number: 10152505
    Abstract: Methods for database management in a distributed system are provided, wherein the distributed system at least includes a plurality of servers. The method includes the steps of: collecting transactions to be executed, wherein each transaction corresponds to a plurality of requests and each request is associated with at least one data; generating a transaction dependency graph corresponding to the requests according to data dependency among the data associated with the requests of all the transactions; partitioning the transaction dependency graph to generate a plurality of partitions corresponding to the servers; generating execution plans corresponding to the partitions; distributing the transactions to the servers for execution based on the generated execution plans.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: December 11, 2018
    Assignee: National Tsing Hua University
    Inventors: Shan-Hung Wu, Meng-Kai Liao, Shao-Kan Pi, Yu-Shan Lin
  • Publication number: 20170328955
    Abstract: A rotary switch state detection device includes a magnetic field generating unit, a gravity sensing unit, a magnetic force sensing unit and a processing unit. The magnetic field generating unit generates a magnetic field. The magnetic force sensing unit and the gravity sensing unit are disposed at a rotary switch to detect a gravity value and a magnetic force value of the magnetic field and generate a gravity strength signal and magnetic field strength signal, respectively. The processing unit is connected to the gravity sensing unit and the magnetic force sensing unit to calculate a gravity value variation and a magnetic force value variation and thereby precisely locate a rotation head of the rotary switch upon completion of rotation thereof.
    Type: Application
    Filed: October 27, 2016
    Publication date: November 16, 2017
    Inventors: YU-SHAN LIN, JUN-LIANG ZHU, TUNG-JUNG HSU, CHAO-TSE HONG
  • Publication number: 20170060935
    Abstract: Methods for database management in a distributed system are provided, wherein the distributed system at least includes a plurality of servers. The method includes the steps of: collecting transactions to be executed, wherein each transaction corresponds to a plurality of requests and each request is associated with at least one data; generating a transaction dependency graph corresponding to the requests according to data dependency among the data associated with the requests of all the transactions; partitioning the transaction dependency graph to generate a plurality of partitions corresponding to the servers; generating execution plans corresponding to the partitions; distributing the transactions to the servers for execution based on the generated execution plans.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 2, 2017
    Inventors: Shan-Hung Wu, Meng-Kai Liao, Shao-Kan Pi, Yu-Shan Lin
  • Publication number: 20160212206
    Abstract: A deterministic database system and a data transferring method thereof are provided. The method includes monitoring a workload of a resource server or a candidate server. When the workload meets a transferring requirement, the resource server starts to copy data to the candidate server. During copying the data, the resource server and the candidate server execute transactions together according to an execution order of the transactions, and then reply an execution result.
    Type: Application
    Filed: April 23, 2015
    Publication date: July 21, 2016
    Inventors: Shan-Hung Wu, Meng-Kai Liao, Shao-Kan Pi, Yu-Shan Lin
  • Patent number: 8957057
    Abstract: The present invention concerns the uses of an azaphilone compound of formula (I): formula (I): or a pharmaceutically acceptable derivative thereof as described in the specification for modulation of the activity of a nuclear hormone receptor and for prevention and/or treatment of a disease or disorder related to nuclear hormone receptor activity.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: February 17, 2015
    Assignee: Food Industry Research and Development Institute
    Inventors: Ta-Wei D. Liu, Yen-Lin Chen, Ming-Der Wu, Ming-Jen Cheng, Hui-Ping Chen, Wen-Jung Wu, Kai-Ping Chen, Yu-Shan Lin, Gwo-Fang Yuan
  • Patent number: 8665155
    Abstract: An emergency rescue system and a rescue-information judgment method are disclosed. The emergency rescue system includes a plurality of fixed nodes, a dynamic node and a back-end processing platform. Each fixed node has its own fixed node identification. The dynamic node can be a portable device with an emergency illumination module. If the dynamic node is manipulated to broadcast a mayday signal, at least one of the fixed nodes senses the mayday signal. Each fixed node which senses the mayday signal sends the fixed node identification thereof and signal strength of the sensed mayday signal to the back-end processing platform. Thereby, the back-end processing platform calculates and determines a rescue location relative to the dynamic node.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: March 4, 2014
    Assignee: Chung-Shan Institute of Science and Technology, Armaments Bureau, Ministry of National Defense
    Inventors: Tain-Wen Suen, Jen-Chi Liao, Feng-Yu Chang, Yu-Shan Lin
  • Patent number: D801062
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: October 31, 2017
    Inventor: Yu-Shan Lin