Patents by Inventor Yusuke Akamine

Yusuke Akamine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190315373
    Abstract: An executing unit is configured to execute at least one of control of operating performance of a plurality of sensors which monitor different regions around a vehicle and predetermined processing for each of a plurality of output values output from the plurality of sensors. A specifying unit is configured to specify a direction of the vehicle with respect to a reference direction set on the basis of a road around the vehicle. A setting unit is configured to set priorities of the plurality of sensors in accordance with the direction of the vehicle specified by the specifying unit. The executing unit changes at least one of ratios of the operating performance of the plurality of sensors and ratios of amounts of processing performed for the plurality of output values on the basis of the priorities.
    Type: Application
    Filed: October 16, 2017
    Publication date: October 17, 2019
    Inventors: Katsuhiko KONDO, Yusuke AKAMINE, Yasuyuki MIYAKE
  • Patent number: 10446034
    Abstract: The driving support system detects an object existing around an own vehicle. The driving support system 1 predicts a position of a movement destination of the detected object. The driving support system sets a region having a predetermined width at each of an X coordinate and a Y coordinate as a tracking region to be set for tracking the object, based on an XY coordinate of the position of the predicted movement destination of the object. The driving support system limits the tracking region, based on a tracking exclusion region where objects unsuitable as tracking targets may be detected with high probability. At that time, the driving support system limits the tracking region by excluding the tracking exclusion region from the tracking region.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: October 15, 2019
    Assignee: DENSO CORPORATION
    Inventors: Yusuke Akamine, Tomohiko Tsuruta, Yasuyuki Miyake
  • Publication number: 20190295418
    Abstract: A driving support device of the present disclosure includes an other vehicle detecting unit, a lane recognizing unit, a track acquiring unit, an interference determining unit, and a driving support unit. The other vehicle detecting unit is configured to detect a location of another vehicle existing around the own vehicle. The lane recognizing unit is configured to recognize a traffic lane in which the other vehicle is located. The track acquiring unit is configured to acquire an own vehicle track. The interference determining unit is configured to determine whether an other vehicle course interferes with the own vehicle track. The driving support unit is configured to perform driving support different between in an interference state indicating a case where the other vehicle course interferes with the own vehicle track and in a non-interference state.
    Type: Application
    Filed: June 13, 2019
    Publication date: September 26, 2019
    Inventors: Yusuke AKAMINE, Yasuyuki MIYAKE
  • Publication number: 20190293778
    Abstract: An estimation apparatus of the present disclosure includes a same-object point information acquiring section, a candidate estimating section, and a direction estimating section. The candidate estimating section estimates, as a candidate direction, a direction that is matched with an arbitrary horizontal direction upon determining that the relative speeds gradually decrease along the arbitrary horizontal direction. The candidate estimating section estimates, as the candidate direction, an opposite direction of the arbitrary horizontal direction upon determining that the relative speeds gradually increases along the arbitrary horizontal direction. The direction estimating section estimates a moving direction of the same object based on the candidate direction.
    Type: Application
    Filed: March 22, 2017
    Publication date: September 26, 2019
    Inventors: Yusuke AKAMINE, Yasuyuki MIYAKE
  • Publication number: 20190212430
    Abstract: A dual-frequency CW processing unit (12) calculates an observation-point orientation of an observation point. An FMCW processing unit (11) calculates at least a power spectrum of a beat signal, which has been generated based on radar waves that have come from the calculated observation-point orientation, in terms of an up-modulation time interval and a down-modulation time interval (termed orientation power spectrum hereinafter). The FMCW processing unit (11) shifts the orientation power spectra of the up- and down-modulation time intervals to positive and negative directions, respectively, by an amount corresponding to a Doppler shift frequency. The FMCW processing unit (11) calculates a differential power spectrum by differentiating the orientation power spectra of the shifted up- and down-modulation time intervals, and detects a peak frequency where intensity is maximum.
    Type: Application
    Filed: July 7, 2017
    Publication date: July 11, 2019
    Applicant: DENSO CORPORATION
    Inventors: Yusuke AKAMINE, Mitsuyasu MATSUURA, Yasuyuki MIYAKE
  • Publication number: 20190143925
    Abstract: An estimation device includes an information acquisition unit, a detection determination unit, a direction determination unit, and a direction estimation unit. When an object is a first-time detected object, the direction determination unit determines whether a relative direction acquired by the information acquisition unit is a direction toward an own vehicle. When the relative direction acquired by the information acquisition unit is a direction toward the own vehicle, the direction estimation unit estimates that a direction predetermined according to an object position acquired by the information acquisition unit is the movement direction of the object.
    Type: Application
    Filed: May 2, 2017
    Publication date: May 16, 2019
    Inventors: Yusuke AKAMINE, Mitsuyasu MATSUURA, Mai SAKAMOTO
  • Publication number: 20180211536
    Abstract: The driving support system detects an object existing around an own vehicle. The driving support system 1 predicts a position of a movement destination of the detected object. The driving support system sets a region having a predetermined width at each of an X coordinate and a Y coordinate as a tracking region to be set for tracking the object, based on an XY coordinate of the position of the predicted movement destination of the object. The driving support system limits the tracking region, based on a tracking exclusion region where objects unsuitable as tracking targets may be detected with high probability. At that time, the driving support system limits the tracking region by excluding the tracking exclusion region from the tracking region.
    Type: Application
    Filed: July 8, 2016
    Publication date: July 26, 2018
    Inventors: Yusuke Akamine, Tomohiko Tsuruta, Yasuyuki Miyake
  • Patent number: 9594965
    Abstract: In a lane boundary line recognition device, a calculation section calculates a degree of uncertainty which affects a correct recognition of white lines on a roadway of a vehicle. A learning section updates a learning value of the degree of uncertainty. A recognition suppression section suppresses execution of a recognition process of recognizing white lines on the roadway when the updated learning value is more than a threshold value. An environment change judgment section judges whether or not a road environment has changed. A learning resetting section resets the learning value of the degree of uncertainty to a previous learning value when the detection result of the environment change judgment section indicates an occurrence of change of the road environment.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: March 14, 2017
    Assignee: DENSO CORPORATION
    Inventors: Yusuke Akamine, Naoki Kawasaki, Tomohiko Tsuruta, Shunsuke Suzuki
  • Publication number: 20160173831
    Abstract: A lane boundary line recognition apparatus, mounted to an own vehicle, images a road surface ahead of the own vehicle and acquires an image. Edge points are extracted from the image. A lane boundary line candidate is extracted based the edge points. A lane boundary line probability of the lane boundary line candidate is calculated. A lane boundary line candidate of which the lane boundary line probability exceeds a predetermined threshold is recognized as a lane boundary line. A solid object is recognized in an image. A lane boundary line being hidden by the solid object is detected. When a lane boundary line being hidden is detected, the lane boundary line probability is suppressed in at least a part of an area outside of the hidden lane boundary line, compared to that when the lane boundary line being hidden is not detected.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 16, 2016
    Inventors: Yusuke Akamine, Naoki Kawasaki, Shunsuke Suzuki
  • Publication number: 20160055383
    Abstract: In a lane boundary line recognition device, a calculation section calculates a degree of uncertainty which affects a correct recognition of white lines on a roadway of a vehicle. A learning section updates a learning value of the degree of uncertainty. A recognition suppression section suppresses execution of a recognition process of recognizing white lines on the roadway when the updated learning value is more than a threshold value. An environment change judgment section judges whether or not a road environment has changed. A learning resetting section resets the learning value of the degree of uncertainty to a previous learning value when the detection result of the environment change judgment section indicates an occurrence of change of the road environment.
    Type: Application
    Filed: August 19, 2015
    Publication date: February 25, 2016
    Inventors: Yusuke Akamine, Naoki Kawasaki, Tomohiko Tsuruta, Shunsuke Suzuki