Patents by Inventor Yusuke KINTSU

Yusuke KINTSU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230238501
    Abstract: An electrode includes an active material layer. The active material layer is provided with a first groove portion and a second groove portion on a surface. The first groove portion has a first depth. The second groove portion has a second depth. The second depth is shallower than the first depth. Each of the first groove portion and the second groove portion extends linearly along the surface of the active material layer. The second groove portion is adjacent to the first groove portion.
    Type: Application
    Filed: November 4, 2022
    Publication date: July 27, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Haruka SHIONOYA, Yusuke KINTSU, Tetsuya MIMURA, Takeshi KONDO, Yuta KAWAMOTO
  • Publication number: 20230223549
    Abstract: An electrode is manufactured by forming an active material layer on a surface of an electrode current collector, forming a groove portion on a surface of the active material layer, and peeling off a part of the active material layer. An electrode current collector includes a metal foil and an adhesive layer. The metal foil includes a first region and a second region. The adhesive layer covers the first region. In the second region, the metal foil is exposed. The active material layer includes a first portion that covers the adhesive layer and a second portion that covers the second region. The groove portion is formed in each of the first portion and the second portion. The second portion is peeled off.
    Type: Application
    Filed: November 4, 2022
    Publication date: July 13, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yusuke KINTSU, Tetsuya MIMURA, Haruka SHIONOYA, Yasuhiro SAKASHITA, Takeshi KONDO, Tomoyuki TASAKI, Yuta KAWAMOTO
  • Publication number: 20230216090
    Abstract: An electrode includes a base material and an active material layer. The active material layer is disposed on a base material surface. One or more grooves are formed on an active material layer surface. The one or more grooves linearly extend along the surface of the active material layer. In a plan view, each of the one or more grooves includes an inlet region, an intermediate region, and an outlet region. Each of the inlet region and the outlet regions is configured such that a first pressure loss occurring when a fluid flows in a forward direction is smaller than a second pressure loss occurring when the fluid flows in a backward direction.
    Type: Application
    Filed: November 7, 2022
    Publication date: July 6, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Haruka SHIONOYA, Yusuke Kintsu, Tetsuya Mimura, Takeshi Kondo, Yuta Kawamoto
  • Publication number: 20230155103
    Abstract: An electrode manufacturing apparatus includes a film forming device that forms an electrode layer on a surface of a substrate. The film forming device includes a first roll that rotates, a second roll that is spaced apart from and opposed to the first roll and rotates in an opposite direction of the first roll, a third roll that is spaced apart from and opposed to the second roll and rotates in the opposite direction of the second roll, and a temperature adjusting unit that reduces a temperature difference between a central portion and an end portion in an axial direction of at least one roll of the first roll, the second roll, and the third roll.
    Type: Application
    Filed: August 18, 2022
    Publication date: May 18, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya MIMURA, Yusuke KINTSU, Haruka SHIONOYA, Takeshi KONDO, Yuta KAWAMOTO
  • Publication number: 20230155102
    Abstract: An electrode manufacturing apparatus includes a shaping roll and an opposed roll that sandwich an electrode therebetween and rotate in opposite directions, and a temperature adjusting unit. The temperature adjusting unit reduces a temperature difference between a central portion and an end portion in an axial direction, of at least one roll of the shaping roll and the opposed roll.
    Type: Application
    Filed: August 25, 2022
    Publication date: May 18, 2023
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuya Mimura, Yusuke Kintsu, Haruka Shionoya, Takeshi Kondo, Yuta Kawamoto
  • Publication number: 20230065983
    Abstract: A slurry is prepared by mixing an active material particle, a binder, and a dispersion medium. The slurry is applied to a surface of a substrate to form a first film. The first film is dried to form a second film. A convex die is pressed against a surface of the second film to form a depressed portion in the surface. After the depressed portion is formed, the second film is dried to form an active material layer. In the second film, a solid phase, a liquid phase, and a gas phase form a pendular state or a funicular state.
    Type: Application
    Filed: August 22, 2022
    Publication date: March 2, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Katsushi ENOKIHARA, Naohiro MASHIMO, Haruka SHIONOYA, Yusuke KINTSU
  • Patent number: 11387485
    Abstract: Disclosed is an all-solid-state lithium ion secondary battery being excellent in cycle characteristics. The all-solid-state lithium ion secondary battery may be an all-solid-state lithium ion secondary battery, wherein an anode comprises an anode active material, an electroconductive material and a solid electrolyte; wherein the anode active material comprises at least one active material selected from the group consisting of a metal that is able to form an alloy with Li, an oxide of the metal, and an alloy of the metal and Li; and wherein a bulk density of the solid electrolyte is 0.3 g/cm3 or more and 0.6 g/cm3 or less.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: July 12, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiro Ose, Hajime Hasegawa, Mitsutoshi Otaki, Yusuke Kintsu
  • Patent number: 11329315
    Abstract: Disclosed is an all-solid-state lithium ion secondary battery including an anode that contains, as an anode active material, at least one selected from the group consisting of a metal that is able to form an alloy with Li, an oxide of the metal, and an alloy of the metal and Li, and being excellent in cycle characteristics. The all-solid-state lithium ion secondary battery may be an all-solid-state lithium ion secondary battery, wherein an anode comprises an anode active material, an electroconductive material and a solid electrolyte; wherein the anode active material comprises at least one active material selected from the group consisting of a metal that is able to form an alloy with Li, an oxide of the metal, and an alloy of the metal and Li; and wherein the solid electrolyte is particles with a BET specific surface area of from 1.8 m2/g to 19.7 m2/g.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: May 10, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiro Ose, Hajime Hasegawa, Mitsutoshi Otaki, Yusuke Kintsu
  • Patent number: 11196082
    Abstract: Provided are an anode mixture configured to provide excellent cycle characteristics when used in an all-solid-state lithium ion secondary battery, an anode containing the anode mixture, and an all-solid-state lithium ion secondary battery containing the anode. Disclosed is an anode mixture for an all-solid-state lithium ion secondary battery, wherein the anode mixture contains an anode active material, a solid electrolyte and an electroconductive material; wherein the anode active material contains at least one active material selected from the group consisting of a metal that is able to form an alloy with Li and an oxide of the metal; and wherein a value obtained by dividing, by a BET specific surface area (m2/g) of the solid electrolyte, a volume percentage (%) of the electroconductive material when a volume of the anode mixture is determined as 100 volume %, is 0.09 or more and 1.61 or less.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: December 7, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiro Ose, Hajime Hasegawa, Yusuke Kintsu, Mitsutoshi Otaki
  • Patent number: 11108081
    Abstract: A method for efficiently producing sulfide solid electrolyte particles which are particles in spherical form and which have a small particle diameter. The method comprises: preparing a sulfide solid electrolyte material, grinding the sulfide solid electrolyte material by mechanical milling to obtain particles in flattened form (a first grinding step), and grinding the particles in flattened form by mechanical milling to obtain sulfide solid electrolyte particles in spherical form (a second grinding step), wherein a relationship A (J)>B (J) is satisfied, where A (J) is a kinetic energy (½(mv2)) per grinding medium used in the first grinding step, and B (J) is a kinetic energy (½(mv2)) per grinding medium used in the second grinding step.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: August 31, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yusuke Kintsu
  • Publication number: 20210126282
    Abstract: Disclosed is an all-solid-state lithium ion secondary battery being excellent in cycle characteristics. The all-solid-state lithium ion secondary battery may be an all-solid-state lithium ion secondary battery, wherein an anode comprises an anode active material, an electroconductive material and a solid electrolyte; wherein the anode active material comprises at least one active material selected from the group consisting of a metal that is able to form an alloy with Li, an oxide of the metal, and an alloy of the metal and Li; and wherein a bulk density of the solid electrolyte is 0.3 g/cm3 or more and 0.6 g/cm3 or less.
    Type: Application
    Filed: April 13, 2018
    Publication date: April 29, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiro OSE, Hajime HASEGAWA, Mitsutoshi OTAKI, Yusuke KINTSU
  • Patent number: 10910666
    Abstract: Disclosed is a method for producing an all-solid-state lithium ion secondary battery being excellent in cycle characteristics. The production method may be a method for producing an all-solid-state lithium ion secondary battery, wherein the method comprises an anode mixture forming step of obtaining an anode mixture by drying a raw material for an anode mixture, which contains an anode active material, a solid electrolyte and an electroconductive material; and wherein, for the anode mixture after being dried in the anode mixture forming step, a voidage V of the inside of the anode mixture calculated by the following formula (1) is 43% or more and 54% or less: V=100?(D1/D0)×100??Formula (1).
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: February 2, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiro Ose, Hajime Hasegawa, Mitsutoshi Otaki, Yusuke Kintsu
  • Publication number: 20200243901
    Abstract: Provided is a method for producing sulfide-based solid electrolyte particles, which is configured to form the sulfide-based solid electrolyte particles into fine particles, while keeping the ion conductivity of the particles at a desired ion conductivity. Disclosed is a method for producing sulfide-based solid electrolyte particles, the method comprising: preparing a sulfide-based solid electrolyte material comprising lithium, phosphorus and sulfur; preparing a mixed solvent of a hydrocarbon-based compound and an ether-based compound; and forming the sulfide-based solid electrolyte material into fine particles by pulverizing the sulfide-based solid electrolyte material in the mixed solvent under an inert gas atmosphere, wherein a water concentration of the mixed solvent is 100 mass ppm or more and 200 mass ppm or less.
    Type: Application
    Filed: January 21, 2020
    Publication date: July 30, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yusuke KINTSU
  • Patent number: 10637094
    Abstract: Disclosed is an anode mixture configured to provide an all-solid-state lithium ion secondary battery being excellent in cycle characteristics when it is used in the battery, an anode including the anode mixture, and an all-solid-state lithium ion secondary battery including the anode. The anode mixture may be an anode mixture for an all-solid-state lithium ion secondary battery, wherein the anode mixture contains an anode active material, a solid electrolyte and an electroconductive material; and wherein a value obtained by multiplying, by a bulk density of the solid electrolyte, a volume percentage (%) of the electroconductive material when a volume of the anode mixture is determined as 100 volume %, is 0.53 or more and 3.0 or less.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: April 28, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiro Ose, Hajime Hasegawa, Yusuke Kintsu, Mitsutoshi Otaki
  • Publication number: 20200119396
    Abstract: Disclosed is an all-solid-state lithium ion secondary battery including an anode that contains, as an anode active material, at least one selected from the group consisting of a metal that is able to form an alloy with Li, an oxide of the metal, and an alloy of the metal and Li, and being excellent in cycle characteristics. The all-solid-state lithium ion secondary battery may be an all-solid-state lithium ion secondary battery, wherein an anode comprises an anode active material, an electroconductive material and a solid electrolyte; wherein the anode active material comprises at least one active material selected from the group consisting of a metal that is able to form an alloy with Li, an oxide of the metal, and an alloy of the metal and Li; and wherein the solid electrolyte is particles with a BET specific surface area of from 1.8 m2/g to 19.7 m2/g.
    Type: Application
    Filed: April 13, 2018
    Publication date: April 16, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiro OSE, Hajime HASEGAWA, Mitsutoshi OTAKI, Yusuke KINTSU
  • Publication number: 20190319302
    Abstract: A method for efficiently producing sulfide solid electrolyte particles which are particles in spherical form and which have a small particle diameter. The method comprises: preparing a sulfide solid electrolyte material, grinding the sulfide solid electrolyte material by mechanical milling to obtain particles in flattened form (a first grinding step), and grinding the particles in flattened form by mechanical milling to obtain sulfide solid electrolyte particles in spherical form (a second grinding step), wherein a relationship A (J)>B (J) is satisfied, where A (J) is a kinetic energy (1/2(mv2)) per grinding medium used in the first grinding step, and B (J) is a kinetic energy (1/2(mv2)) per grinding medium used in the second grinding step.
    Type: Application
    Filed: March 20, 2019
    Publication date: October 17, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yusuke KINTSU
  • Publication number: 20180301746
    Abstract: Disclosed is an anode mixture configured to provide an all-solid-state lithium ion secondary battery being excellent in cycle characteristics when it is used in the battery, an anode including the anode mixture, and an all-solid-state lithium ion secondary battery including the anode. The anode mixture may be an anode mixture for an all-solid-state lithium ion secondary battery, wherein the anode mixture contains an anode active material, a solid electrolyte and an electroconductive material; and wherein a value obtained by multiplying, by a bulk density of the solid electrolyte, a volume percentage (%) of the electroconductive material when a volume of the anode mixture is determined as 100 volume %, is 0.53 or more and 3.0 or less.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 18, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiro OSE, Hajime HASEGAWA, Yusuke KINTSU, Mitsutoshi OTAKI
  • Publication number: 20180301747
    Abstract: Disclosed is a method for producing an all-solid-state lithium ion secondary battery being excellent in cycle characteristics.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 18, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiro OSE, Hajime HASEGAWA, Mitsutoshi OTAKI, Yusuke KINTSU
  • Publication number: 20180301753
    Abstract: Provided are an anode mixture configured to provide excellent cycle characteristics when used in an all-solid-state lithium ion secondary battery, an anode containing the anode mixture, and an all-solid-state lithium ion secondary battery containing the anode. Disclosed is an anode mixture for an all-solid-state lithium ion secondary battery, wherein the anode mixture contains an anode active material, a solid electrolyte and an electroconductive material; wherein the anode active material contains at least one active material selected from the group consisting of a metal that is able to form an alloy with Li and an oxide of the metal; and wherein a value obtained by dividing, by a BET specific surface area (m2/g) of the solid electrolyte, a volume percentage (%) of the electroconductive material when a volume of the anode mixture is determined as 100 volume %, is 0.09 or more and 1.61 or less.
    Type: Application
    Filed: April 9, 2018
    Publication date: October 18, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiro OSE, Hajime HASEGAWA, Yusuke KINTSU, Mitsutoshi OTAKI
  • Publication number: 20180301689
    Abstract: Disclosed is a method for producing an all-solid-state lithium ion secondary battery being excellent in cycle characteristics. The production method may be a method for producing an all-solid-state lithium ion secondary battery, wherein the method comprises: an anode mixture forming step of obtaining an anode mixture by drying a raw material for an anode mixture, which contains an anode active material, a solid electrolyte and an electroconductive material; and wherein, a value obtained by dividing a volume percentage (%) of the electroconductive material when the volume of the anode mixture is determined as 100 volume %, by a voidage V (%) of the inside of the anode mixture calculated by the following formula (1), is 2.3 or more and 16.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 18, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiro OSE, Hajime HASEGAWA, Mitsutoshi OTAKI, Yusuke KINTSU