Patents by Inventor Yuta Nakazawa

Yuta Nakazawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190299195
    Abstract: An object of the present invention is to provide a method for regenerating a catalyst for butadiene production, for removing a coke-like substance which is generated by oxidative dehydrogenation of n-butene in the presence of a catalyst for butadiene production and which is attached to the catalyst and the inside of a reactor. After the catalyst is used in oxidative dehydrogenation of butenes, the catalyst regeneration method of the present invention removes a coke-like substance in a reactor which is charged with the catalyst for butadiene production, the catalyst having a prescribed composition before being used in the oxidative dehydrogenation.
    Type: Application
    Filed: December 22, 2016
    Publication date: October 3, 2019
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Yuta NAKAZAWA, Shigeki OKUMURA
  • Publication number: 20190070591
    Abstract: Provided are a catalyst that suppresses production of a coke-like material and improves the long-term stability of the reaction, and a method for producing the catalyst. A composite metal oxide catalyst for conjugated diolefin production is used for producing a conjugated diolefin from a mixed gas including a monoolefin having 4 or more carbon atoms and molecular oxygen by a catalytic oxidative dehydrogenation reaction, the catalyst having a relative intensity ratio of X-ray diffraction peaks represented by the following Formula (A): 0.9<Pr<3.0 Pr=Pi1/Pi2??(A) (in the formula, Pi1 represents the maximum peak height at a 2? value in the range of 26.4°±0.3° in the X-ray diffraction peaks; Pi2 represents the maximum peak height at a 2? value in the range of 28.5°±0.3° in the X-ray diffraction peaks; and Pr represents the relative intensity ratio of Pi1 with respect to Pi2).
    Type: Application
    Filed: October 18, 2016
    Publication date: March 7, 2019
    Applicants: NIPPON KAYAKU KABUSHIKI KAISHA, NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Hiroki MOTOMURA, Yuta NAKAZAWA, Shigeki OKUMURA
  • Publication number: 20180208685
    Abstract: A supported molded catalyst having increased hardness, the supported molded catalyst being capable of improving the long-term stability of a reaction for producing a conjugated diolefin by catalytic oxidative dehydrogenation from a mixed gas including a monoolefin having 4 or more carbon atoms and molecular oxygen; and a method for producing the catalyst is provided. A molded catalyst for conjugated diolefin production, the molded catalyst being a catalyst for producing a conjugated diolefin by a catalytic oxidative dehydrogenation reaction from a mixed gas including a monoolefin having 4 or more carbon atoms and molecular oxygen, and being produced by molding a composite metal oxide and a glass fiber-like inorganic auxiliary agent.
    Type: Application
    Filed: September 15, 2016
    Publication date: July 26, 2018
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Shigeki OKUMURA, Yuta NAKAZAWA, Hiroki MOTOMURA, Bungo NISHIZAWA, Tomohiro OBATA, Koji NAKAYAMA
  • Patent number: 8877964
    Abstract: The present invention relates to a method for producing acrylic acid through vapor-phase contact oxidation of acrolein, wherein a reactor tube is divided into at least two catalyst layers, and catalysts having a higher activity are charged in the reactor tube sequentially toward an outlet port side from a material source gas inlet port side for a reaction therein to give acrylic acid, and wherein a catalyst activity-controlling method is a method comprising: a step of mixing a molybdenum-containing compound, a vanadium-containing compound, a copper-containing compound and an antimony-containing compound with water, then drying and calcining a resulting mixture, in which a catalytically-active element composition is kept constant but material source compounds are made to vary in type to give composite metal oxides having a different activity.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: November 4, 2014
    Assignee: NipponKayaku KabushikiKaisha
    Inventors: Yuta Nakazawa, Susumu Matsumoto, Tomoaki Kobayashi, Tatsuhiko Kurakami
  • Publication number: 20130217915
    Abstract: The present invention relates to a method for producing acrylic acid through vapor-phase contact oxidation of acrolein, wherein a reactor tube is divided into at least two catalyst layers, and catalysts having a higher activity are charged in the reactor tube sequentially toward an outlet port side from a material source gas inlet port side for a reaction therein to give acrylic acid, and wherein a catalyst activity-controlling method is a method comprising: a step of mixing a molybdenum-containing compound, a vanadium-containing compound, a copper-containing compound and an antimony-containing compound with water, then drying and calcining a resulting mixture, in which a catalytically-active element composition is kept constant but material source compounds are made to vary in type to give composite metal oxides having a different activity.
    Type: Application
    Filed: October 27, 2011
    Publication date: August 22, 2013
    Applicant: NIPPONKAYAKU KABUSHIKIKAISHA
    Inventors: Yuta Nakazawa, Susumu Matsumoto, Tomoaki Kobayashi, Tatsuhiko Kurakami