Patents by Inventor Yutaka Hayashibe

Yutaka Hayashibe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6668623
    Abstract: A method and apparatus for efficiently analyzing an organic macromolecular component contained in a sample with high precision are provided. The method and apparatus for analyzing the organic macromolecular component are based on a flow analysis method with a measuring system including a sample introducing section, a preparing section, and a measuring section, composed of steps of supplying a sample with a carrier solution into the measurement system through the introducing section, leading the sample to the preparing section and separating an organic macromolecular component in the sample, and leading the separated organic macromolecular component to the measuring section and analyzing. Herein, the step of separating the organic macromolecular component includes steps of the organic macromolecular component in the sample being adsorbed on a resin and introducing an eluant into the preparing section and eluting the organic macromolecular component adsorbed on the resin.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: December 30, 2003
    Assignee: Mitsubishi Materials Corporation
    Inventors: Michiko Tani, Yutaka Hayashibe, Masaaki Kato, Minoru Takeya
  • Patent number: 6668624
    Abstract: A method and an apparatus for efficiently analyzing an organic macromolecular component contained in a sample with high precision are provided. The method and the apparatus for analyzing the organic macromolecular component are based on a flow analysis method with a measuring system including a sample introduction section, a preparation section, and a measuring section, and include the steps of supplying a sample together with a carrier solution into the measurement system through the introduction section, leading the sample to the preparation section and separating an organic macromolecular component from the sample, and leading the separated organic macromolecular component to the measuring section for analysis.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: December 30, 2003
    Assignee: Mitsubishi Materials Corporation
    Inventors: Michiko Tani, Yutaka Hayashibe, Masaaki Kato, Minoru Takeya
  • Publication number: 20020134142
    Abstract: A method and an apparatus for efficiently analyzing an organic macromolecular component contained in a sample with high precision are provided. The method and the apparatus for analyzing the organic macromolecular component are based on a flow analysis method with a measuring system including a sample introduction section, a preparation section, and a measuring section, and include the steps of supplying a sample together with a carrier solution into the measurement system through the introduction section, leading the sample to the preparation section and separating an organic macromolecular component from the sample, and leading the separated organic macromolecular component to the measuring section for analysis.
    Type: Application
    Filed: March 30, 2001
    Publication date: September 26, 2002
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Michiko Tani, Yutaka Hayashibe, Masaaki Kato, Minoru Takeya
  • Publication number: 20010019843
    Abstract: A method and apparatus for efficiently analyzing an organic macromolecular component contained in a sample with high precision are provided. The method and apparatus for analyzing the organic macromolecular component are based on a flow analysis method with a measuring system including a sample introducing section, a preparing section, and a measuring section, composed of steps of supplying a sample with a carrier solution into the measurement system through the introducing section, leading the sample to the preparing section and separating an organic macromolecular component in the sample, and leading the separated organic macromolecular component to the measuring section and analyzing. Herein, the step of separating the organic macromolecular component includes steps of the organic macromolecular component in the sample being adsorbed on a resin and introducing an eluant into the preparing section and eluting the organic macromolecular component adsorbed on the resin.
    Type: Application
    Filed: March 2, 2001
    Publication date: September 6, 2001
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Michiko Tani, Yutaka Hayashibe, Masaaki Kato, Minoru Takeya
  • Patent number: 6171552
    Abstract: The present invention provides for a hydride formation analytical apparatus which forms hydrides of target components contained in a sample liquid and then analyzes them. The hydride formation analytical apparatus comprises a sample-introducing part, a reagent-introducing part, a reaction part, a gas-liquid separating part and a detecting part, wherein an acid-feeding part and a reducing agent-feeding part are part of the reagent-introducing part; the hydride gas of the sample is formed by the aid of the acid and the reducing agent fed into the above reaction part; and this is introduced into the detecting part for analysis.
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: January 9, 2001
    Assignee: Mitsubishi Materials Corporation
    Inventors: Minoru Takeya, Yutaka Hayashibe, Kazutoshi Shimura
  • Patent number: 6083754
    Abstract: A method of continuous flow analysis is provided which enables a plurality of color-forming components contained in a sample to be simultaneously analyzed with utmost ease. The method involves irradiating the sample with a measuring light which generates a wavelength having absorption bands with respect to such color-forming components, measuring the absorbance of each of the components in a color-formed state while the components are being adjusted stepwise in their color-forming state, and comparing the resultant absorbances of the components with each other. Preferably, a plurality of measuring cells are used to stepwise adjust the sample in its color-forming state, the measuring cells being connected in tandem such that a color former and/or a masking agent are incorporated in the sample while the latter is being caused to successively flow through these cells so that the sample is adjusted in its color-forming state at each of the measuring cells and measured in respect of its absorbances.
    Type: Grant
    Filed: October 20, 1997
    Date of Patent: July 4, 2000
    Assignee: Mitsubishi Materials Corporation
    Inventors: Hiroyuki Sakurai, Yutaka Hayashibe, Minoru Takeya, Yasumasa Sayama
  • Patent number: 5965448
    Abstract: A flow injection analytical apparatus which is capable of continuously performing flow analysis of a sample, produces precipitates during the flow through a capillary. The precipitation separation type continuous flow analytical apparatus has a sample injection portion, a reagent addition portion and an analytical portion which are integrally communicated by a measurement pipeline to form a measurement system. A precipitant addition portion and a filtration portion are provided between the sample injection portion and the reagent addition portion in order to continuously perform production and filtration of precipitates during flow of the sample solution to the reagent addition portion.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: October 12, 1999
    Assignee: Mitsubishi Materials Corporation
    Inventors: Masaaki Katou, Yutaka Hayashibe, Minoru Takeya, Yasumasa Sayama
  • Patent number: 5624846
    Abstract: A continuous flow analyzing method and an apparatus for carrying out the analyzing method wherein a sample is injected in a continuously flowing carrier and the sample is introduced into a detector by the carrier to thereby perform a quantitative analysis contained in the sample. In the method the sample to be analyzed is filled into a sample introduction switchover valve (SISV); a portion of the sample from the SISV is injected into the carrier and an analysis of this sample is conducted to obtain a detection peak for the analyzed sample. These steps are repeated and the sample is continuously analyzed by, in the case where a detection peak obtained in the detector is under an optimum analysis range, increasing an injection amount of the sample, and in the case where the detection peak obtained in the detector is over the optimum range, decreasing the injection amount of the sample. Adjustment of the detection peak is repeated until the detection peak reaches the optimum analysis range.
    Type: Grant
    Filed: April 28, 1995
    Date of Patent: April 29, 1997
    Assignee: Mitsubishi Materials Corporation
    Inventors: Yutaka Hayashibe, Yasumasa Sayama
  • Patent number: 5407832
    Abstract: This invention provides a measuring method and a device suitable for the quantitative analysis of metal elements contained in body fluids comprising:using the flow injection method for reacting a sample with a reagent in a tubule and analyzing the reacted solution. In essence, the present invention provides;a method for introducing a body fluid sample and a protein release reagent into a carrier solution, reacting the two solutions with one another in the tubule in order to liberate the protein contained in the body fluid sample, followed by introducing the reacted solution into a quantitative analysis means for determining and measuring the concentration of target metal(s) contained in the body fluid; anda quantitative analysis device for performing the foregoing method.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: April 18, 1995
    Inventors: Yutaka Hayashibe, Minoru Takeya, Yasumasa Sayama
  • Patent number: 5405582
    Abstract: This invention provides a measuring method and a device suitable for the quantitative analysis of metal elements contained in body fluids comprising:using the flow injection method for reacting a sample with a reagent in a tubule and analyzing the reacted solution. In essence, the present invention provides;a method for introducing the protein liberated by the reaction of body fluid sample and protein-release reagent into a separating membrane for preventing the passage of protein to separate and remove the liberated protein, and then introducing the reacted solution into a quantitative analysis means for determining and measuring the concentration of target metal contained in the body fluid; anda quantitative analysis device for performing the foregoing method.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: April 11, 1995
    Inventors: Yutaka Hayashibe, Minoru Takeya, Yasumasa Sayama
  • Patent number: 5387524
    Abstract: This invention provides a measuring method for the quantitative flow injection analysis of metal elements contained in body fluids comprising introducing the protein liberated by the reaction of body fluid sample and protein-precipitating reagent into a separating membrane for preventing the passage of protein to separate and remove the liberated protein, and then introducing the reacted solution into quantitative analysis means for determining and measuring the concentration of target metal contained in the body fluid.
    Type: Grant
    Filed: June 23, 1993
    Date of Patent: February 7, 1995
    Assignee: Mitsubishi Materials Corporation
    Inventors: Yutaka Hayashibe, Minoru Takeya, Yasumasa Sayama
  • Patent number: 5178771
    Abstract: Concentrations of cobalt and copper of electrolysis solution for electrowinning of zinc can be measured any time during electrowinning operation by continuously sampling the solution, diluting it, adding coloring reagent to the flow of the solution and spectrophotometrically analyzing the solution.The cobalt and copper as deleterious impurities can be removed continuously and automatically by measuring their concentrations by the above method and adding precipitation reagents for them in an amount calculated by a microcomputer on the basis of said analysis.
    Type: Grant
    Filed: May 24, 1991
    Date of Patent: January 12, 1993
    Assignee: Mitsubishi Materials Corporation
    Inventors: Yutaka Hayashibe, Minoru Takeya, Kazunori Yamashita, Mamoru Minami