Patents by Inventor Yutaka Kamamoto

Yutaka Kamamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200090664
    Abstract: In encoding, a frequency-domain sample sequence derived from an acoustic signal is divided by a weighted envelope and is then divided by a gain, the result obtained is quantized, and each sample is variable-length encoded. The error between the sample before quantization and the sample after quantization is quantized with information saved in this variable-length encoding. This quantization is performed under a rule that specifies, according to the number of saved bits, samples whose errors are to be quantized. In decoding, variable-length codes in an input sequence of codes are decoded to obtain a frequency-domain sample sequence; an error signal is further decoded under a rule that depends on the number of bits of the variable-length codes; and from the obtained sample sequence, the original sample sequence is obtained according to supplementary information.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 19, 2020
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Takehiro MORIYA, Noboru Harada, Yutaka Kamamoto, Yusuke Hiwasaki, Masahiro Fukui
  • Publication number: 20200043506
    Abstract: The present invention reduces encoding distortion in frequency domain encoding compared to conventional techniques, and obtains LSP parameters that correspond to quantized LSP parameters for the preceding frame and are to be used in time domain encoding from coefficients equivalent to linear prediction coefficients resulting from frequency domain encoding. When p is an integer equal to or greater than 1, a linear prediction coefficient sequence which is obtained by linear prediction analysis of audio signals in a predetermined time segment is represented as a[1], a[2], . . . , a[p], and ?[1], ?[2], . . . , ?[p] are a frequency domain parameter sequence derived from the linear prediction coefficient sequence a[1], a[2], . . . , a[p], an LSP linear transformation unit (300) determines the value of each converted frequency domain parameter ˜?[i] (i=1, 2, . . . , p) in a converted frequency domain parameter sequence ˜?[1], ˜?[2], . . . , ˜?[p] using the frequency domain parameter sequence ?[1], c[2], . . .
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Applicants: Nippon Telegraph and Telephone Corporation, The University of Tokyo
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada, Hirokazu Kameoka, Ryosuke Sugiura
  • Patent number: 10553229
    Abstract: A technology of accurately coding and decoding coefficients which are convertible into linear prediction coefficients even for a frame in which the spectrum variation is great while suppressing an increase in the code amount as a whole is provided. A coding device includes: a first coding unit that obtains a first code by coding coefficients which are convertible into linear prediction coefficients of more than one order; and a second coding unit that obtains a second code by coding at least quantization errors of the first coding unit if (A-1) an index Q commensurate with how high the peak-to-valley height of a spectral envelope is, the spectral envelope corresponding to the coefficients which are convertible into the linear prediction coefficients of more than one order, is larger than or equal to a predetermined threshold value Th1 and/or (B-1) an index Q? commensurate with how short the peak-to-valley height of the spectral envelope is, is smaller than or equal to a predetermined threshold value Th1?.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: February 4, 2020
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada
  • Patent number: 10529350
    Abstract: A technology of accurately coding and decoding coefficients which are convertible into linear prediction coefficients even for a frame in which the spectrum variation is great while suppressing an increase in the code amount as a whole is provided. A coding device includes: a first coding unit that obtains a first code by coding coefficients which are convertible into linear prediction coefficients of more than one order; and a second coding unit that obtains a second code by coding at least quantization errors of the first coding unit if (A-1) an index Q commensurate with how high the peak-to-valley height of a spectral envelope is, the spectral envelope corresponding to the coefficients which are convertible into the linear prediction coefficients of more than one order, is larger than or equal to a predetermined threshold value Th1 and/or (B-1) an index Q? commensurate with how short the peak-to-valley height of the spectral envelope is, is smaller than or equal to a predetermined threshold value Th1?.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: January 7, 2020
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada
  • Patent number: 10515643
    Abstract: In encoding, a frequency-domain sample sequence derived from an acoustic signal is divided by a weighted envelope and is then divided by a gain, the result obtained is quantized, and each sample is variable-length encoded. The error between the sample before quantization and the sample after quantization is quantized with information saved in this variable-length encoding. This quantization is performed under a rule that specifies, according to the number of saved bits, samples whose errors are to be quantized. In decoding, variable-length codes in an input sequence of codes are decoded to obtain a frequency-domain sample sequence; an error signal is further decoded under a rule that depends on the number of bits of the variable-length codes; and from the obtained sample sequence, the original sample sequence is obtained according to supplementary information.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: December 24, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takehiro Moriya, Noboru Harada, Yutaka Kamamoto, Yusuke Hiwasaki, Masahiro Fukui
  • Patent number: 10504533
    Abstract: The present invention reduces encoding distortion in frequency domain encoding compared to conventional techniques, and obtains LSP parameters that correspond to quantized LSP parameters for the preceding frame and are to be used in time domain encoding from coefficients equivalent to linear prediction coefficients resulting from frequency domain encoding. When p is an integer equal to or greater than 1, a linear prediction coefficient sequence which is obtained by linear prediction analysis of audio signals in a predetermined time segment is represented as a[1], a[2], . . . , a[p], and ?[1], ?[2], . . . , ?[p] are a frequency domain parameter sequence derived from the linear prediction coefficient sequence a[1], a[2], . . . , a[p], an LSP linear transformation unit (300) determines the value of each converted frequency domain parameter {tilde over (?)}?[i] (i=1, 2, . . . , p) in a converted frequency domain parameter sequence {tilde over (?)}w[1], {tilde over (?)}w[2], . . .
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: December 10, 2019
    Assignees: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, The University of Tokyo
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada, Hirokazu Kameoka, Ryosuke Sugiura
  • Publication number: 20190355369
    Abstract: A coding method and a decoding method are provided which can use in combination a predictive coding and decoding method which is a coding and decoding method that can accurately express coefficients which are convertible into linear prediction coefficients with a small code amount and a coding and decoding method that can obtain correctly, by decoding, coefficients which are convertible into linear prediction coefficients of the present frame if a linear prediction coefficient code of the present frame is correctly input to a decoding device.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 21, 2019
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Takehiro MORIYA, Yutaka Kamamoto, Noboru Harada
  • Patent number: 10469167
    Abstract: An optical communication system includes a signal processing apparatus and a wireless apparatus between which functions of a base station are divided, wherein a periodic symbol sequence including a cyclic prefix appended to a signal of a predetermined size to which an IFFT (Inverse Fast Fourier Transform) has been applied is transmitted between the signal processing apparatus and the wireless apparatus by means of digital RoF (Radio over Fiber) transmission, the signal processing apparatus and the wireless apparatus each include a transmission unit and a reception unit, the transmission unit includes: a compression size determination unit that acquires symbol information relating to a starting position of the symbol sequence and lengths of symbols constituting the symbol sequence, and that determines, based on the acquired symbol information, a compression size for each of symbols that are to be compressed; and a compression unit that compresses the symbol sequence in units of determined compression sizes, an
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: November 5, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Naotaka Shibata, Shigeru Kuwano, Yutaka Kamamoto, Takehiro Moriya, Jun Terada
  • Publication number: 20190304476
    Abstract: A technology of accurately coding and decoding coefficients which are convertible into linear prediction coefficients even for a frame in which the spectrum variation is great while suppressing an increase in the code amount as a whole is provided. A coding device includes: a first coding unit that obtains a first code by coding coefficients which are convertible into linear prediction coefficients of more than one order; and a second coding unit that obtains a second code by coding at least quantization errors of the first coding unit if (A-1) an index Q commensurate with how high the peak-to-valley height of a spectral envelope is, the spectral envelope corresponding to the coefficients which are convertible into the linear prediction coefficients of more than one order, is larger than or equal to a predetermined threshold value Th1 and/or (B-1) an index Q? commensurate with how short the peak-to-valley height of the spectral envelope is, is smaller than or equal to a predetermined threshold value Th1?.
    Type: Application
    Filed: June 3, 2019
    Publication date: October 3, 2019
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Takehiro MORIYA, Yutaka KAMAMOTO, Noboru HARADA
  • Publication number: 20190287545
    Abstract: A technology of accurately coding and decoding coefficients which are convertible into linear prediction coefficients even for a frame in which the spectrum variation is great while suppressing an increase in the code amount as a whole is provided. A coding device includes: a first coding unit that obtains a first code by coding coefficients which are convertible into linear prediction coefficients of more than one order; and a second coding unit that obtains a second code by coding at least quantization errors of the first coding unit if (A-1) an index Q commensurate with how high the peak-to-valley height of a spectral envelope is, the spectral envelope corresponding to the coefficients which are convertible into the linear prediction coefficients of more than one order, is larger than or equal to a predetermined threshold value Th1 and/or (B-1) an index Q? commensurate with how short the peak-to-valley height of the spectral envelope is, is smaller than or equal to a predetermined threshold value Th1'.
    Type: Application
    Filed: June 3, 2019
    Publication date: September 19, 2019
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Takehiro MORIYA, Yutaka KAMAMOTO, Noboru HARADA
  • Patent number: 10418042
    Abstract: A coding method and a decoding method are provided which can use in combination a predictive coding and decoding method which is a coding and decoding method that can accurately express coefficients which are convertible into linear prediction coefficients with a small code amount and a coding and decoding method that can obtain correctly, by decoding, coefficients which are convertible into linear prediction coefficients of the present frame if a linear prediction coefficient code of the present frame is correctly input to a decoding device.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: September 17, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada
  • Publication number: 20190259403
    Abstract: The present invention reduces encoding distortion in frequency domain encoding compared to conventional techniques, and obtains LSP parameters that correspond to quantized LSP parameters for the preceding frame and are to be used in time domain encoding from coefficients equivalent to linear prediction coefficients resulting from frequency domain encoding. When p is an integer equal to or greater than 1, a linear prediction coefficient sequence which is obtained by linear prediction analysis of audio signals in a predetermined time segment is represented as a[1], a[2], . . . , a[p], and ?[1], ?[2], . . . , ?[p] are a frequency domain parameter sequence derived from the linear prediction coefficient sequence a[1], a[2], . . . , a[p], an LSP linear transformation unit (300) determines the value of each converted frequency domain parameter ˜?[i] (i=1, 2, . . . , p) in a converted frequency domain parameter sequence ˜?[1], ˜?[2], . . . , ˜?[p] using the frequency domain parameter sequence ?[1], ?[2], . . .
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Applicants: Nippon Telegraph and Telephone Corporation, The University of Tokyo
    Inventors: Takehiro MORIYA, Yutaka KAMAMOTO, Noboru HARADA, Hirokazu KAMEOKA, Ryosuke SUGIURA
  • Patent number: 10381015
    Abstract: A technology of accurately coding and decoding coefficients which are convertible into linear prediction coefficients even for a frame in which the spectrum variation is great while suppressing an increase in the code amount as a whole is provided. A coding device includes: a first coding unit that obtains a first code by coding coefficients which are convertible into linear prediction coefficients of more than one order; and a second coding unit that obtains a second code by coding at least quantization errors of the first coding unit if (A-1) an index Q commensurate with how high the peak-to-valley height of a spectral envelope is, the spectral envelope corresponding to the coefficients which are convertible into the linear prediction coefficients of more than one order, is larger than or equal to a predetermined threshold value Th1 and/or (B-1) an index Q? commensurate with how short the peak-to-valley height of the spectral envelope is, is smaller than or equal to a predetermined threshold value Th1?.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: August 13, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada
  • Publication number: 20190206414
    Abstract: A coding technology that efficiently codes an input sound signal irrespective of the characteristics thereof and can obtain a decoded sound signal that sounds less artificial to a listener. A coding method codes an input sound signal frame by frame of a predetermined time segment by a selected coding processing from a plurality of types of coding processing in the frequency domain, the coding method makes it possible for a selection unit to select coding processing which is different from the coding processing of the preceding frame as coding processing of the present frame if at least one of the magnitude of the energy of high frequency components of the input sound signal of the preceding frame and the magnitude of the energy of high frequency components of the input sound signal of the present frame is smaller than or equal to a predetermined threshold value.
    Type: Application
    Filed: March 7, 2019
    Publication date: July 4, 2019
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Takehiro MORIYA, Yutaka KAMAMOTO, Noboru HARADA
  • Patent number: 10332533
    Abstract: The present invention reduces encoding distortion in frequency domain encoding compared to conventional techniques, and obtains LSP parameters that correspond to quantized LSP parameters for the preceding frame and are to be used in time domain encoding from coefficients equivalent to linear prediction coefficients resulting from frequency domain encoding. When p is an integer equal to or greater than 1, a linear prediction coefficient sequence which is obtained by linear prediction analysis of audio signals in a predetermined time segment is represented as a[1], a[2], . . . , a[p], and ?[1], ?[2], . . . , ?[p] are a frequency domain parameter sequence derived from the linear prediction coefficient sequence a[1], a[2], . . . , a[p], an LSP linear transformation unit (300) determines the value of each converted frequency domain parameter ˜?[i] (i=1, 2, . . . , p) in a converted frequency domain parameter sequence ˜?[1], ˜?[2], . . . , ˜?[p] using the frequency domain parameter sequence ?[1], ?[2], . . .
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: June 25, 2019
    Assignees: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, The University of Tokyo
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada, Hirokazu Kameoka, Ryosuke Sugiura
  • Patent number: 10325609
    Abstract: A linear predictive coding apparatus is provided that performs linear predictive analysis using a pseudo correlation function signal sequence obtained by performing inverse Fourier transform regarding the ?1-th power of the absolute values of the frequency domain sample sequence corresponding to the time-series signal as a power spectrum to obtain coefficients transformable to linear predictive coefficients. The apparatus further adapts values of ? for a plurality of candidates for coefficients transformable to linear predictive coefficients stored in a code book and the coefficients transformable to linear predictive coefficients are obtained by the linear predictive analysis.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: June 18, 2019
    Assignees: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, The University of Tokyo
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada, Hirokazu Kameoka, Ryosuke Sugiura
  • Patent number: 10304472
    Abstract: A coding technology that efficiently codes an input sound signal irrespective of the characteristics thereof and can obtain a decoded sound signal that sounds less artificial to a listener. A coding method codes an input sound signal frame by frame of a predetermined time segment by a selected coding processing from a plurality of types of coding processing in the frequency domain, the coding method makes it possible for a selection unit to select coding processing which is different from the coding processing of the preceding frame as coding processing of the present frame if at least one of the magnitude of the energy of high frequency components of the input sound signal of the preceding frame and the magnitude of the energy of high frequency components of the input sound signal of the present frame is smaller than or equal to a predetermined threshold value.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: May 28, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada
  • Patent number: 10290310
    Abstract: In an encoding method that is expected to produce a smaller code amount out of a periodicity-based encoding method and a non-periodicity-based encoding method, the amount of code or an estimated value of the amount of code of an integer value sequence which is derived from an audio signal is obtained while adjusting gain. In the other encoding method, an integer value sequence obtained in this process is substituted to obtain the amount of code or an estimated value of the amount of code of the integer value sequence. The obtained code amounts or estimated values are compared to choose one of the encoding methods and the integer value sequence is encoded using the chosen encoding method to obtain and output an integer signal code.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: May 14, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada
  • Patent number: 10283132
    Abstract: In an encoding method that is expected to produce a smaller code amount out of a periodicity-based encoding method and a non-periodicity-based encoding method, the amount of code or an estimated value of the amount of code of an integer value sequence which is derived from an audio signal is obtained while adjusting gain. In the other encoding method, an integer value sequence obtained in this process is substituted to obtain the amount of code or an estimated value of the amount of code of the integer value sequence. The obtained code amounts or estimated values are compared to choose one of the encoding methods and the integer value sequence is encoded using the chosen encoding method to obtain and output an integer signal code.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: May 7, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada
  • Patent number: 10276186
    Abstract: A parameter determination device includes: a spectral envelope estimating portion performing estimation of a spectral envelope using a parameter ?0 specified in a predetermined method, regarding the ?0-th power of absolute values of a frequency domain sample sequence corresponding to a time-series signal as a power spectrum on the assumption that the parameter ?0 and a parameter ? are positive numbers; a whitened spectral sequence generating portion obtaining a whitened spectral sequence which is a sequence obtained by dividing the frequency domain sample sequence by the spectral envelope; and a parameter acquiring portion determining such a parameter ? that generalized Gaussian distribution with the parameter ? as a shape parameter approximates a histogram of the whitened spectral sequence.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: April 30, 2019
    Assignees: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, The University of Tokyo
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada, Hirokazu Kameoka, Ryosuke Sugiura