Patents by Inventor YUTAKA MOMIYAMA

YUTAKA MOMIYAMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200312694
    Abstract: According to one embodiment, an electrostatic chuck includes a ceramic dielectric substrate, a base plate, and a bonding layer provided between the ceramic dielectric substrate and the base plate. At least one of the following first to sixth conditions is satisfied: First condition: An elongation percentage ?1 is not less than 120%; Second condition: A ratio ?1/?2 of the elongation percentage is not less than 0.60; Third condition: A bonding strength ƒ1 is not less than 0.4 MPa and not more than 10 MPa; Fourth condition: A ratio ?1/?2 of the bonding strength is not less than 0.6 and not more than 10; Fifth condition: An elastic modulus ?1 is not less than 0.1 MPa and not more than 10 MPa; Sixth condition: A ratio ?1/?2 of the elastic modulus is not less than 0.6 and not more than 30.
    Type: Application
    Filed: March 25, 2020
    Publication date: October 1, 2020
    Inventors: Yutaka MOMIYAMA, Hitoshi SASAKI
  • Publication number: 20200303232
    Abstract: According to one embodiment, an electrostatic chuck includes a ceramic dielectric substrate, a base plate, and a first electrode layer. The ceramic dielectric substrate has first and second major surfaces. The first electrode layer is provided inside the ceramic dielectric substrate. The first electrode layer is connected to a high frequency power supply. The first electrode layer has a first surface at the first major surface side and a second surface at a side opposite to the first surface. The first electrode layer includes a first portion including the first surface. The first electrode layer includes a ceramic component and a metal component. A concentration of the metal component in the first portion is higher than an average concentration of the metal component in the first electrode layer.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Inventors: Hitoshi SASAKI, Yutaka MOMIYAMA
  • Publication number: 20200303231
    Abstract: According to one embodiment, an electrostatic chuck includes a ceramic dielectric substrate, a base plate, and first and second electrode layers. The ceramic dielectric substrate has first and second major surfaces. The first and second electrode layers are provided inside the ceramic dielectric substrate. The second electrode layer is provided between the first electrode layer and the first major surface. The first electrode layer has a first surface at the first major surface side and a second surface at a side opposite to the first surface. The first electrode layer includes a first portion including the first surface. The first electrode layer includes a ceramic component and a metal component. A concentration of the ceramic component in the first portion is higher than an average concentration of the ceramic component in the first electrode layer.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Inventors: Hitoshi SASAKI, Yutaka MOMIYAMA
  • Publication number: 20200035538
    Abstract: According to one embodiment, an electrostatic chuck includes a ceramic dielectric, a base plate, a first electrode layer, and a second electrode layer. The ceramic dielectric substrate has a first major surface and a second major surface. The first electrode layer is provided between the first major surface and the second major surface. The second electrode layer is provided between the first electrode layer and the first major surface. The first electrode layer has a first surface and a second surface. A distance between the first surface and the first major surface is constant. A distance between the second surface and the first surface at an end portion of the first electrode layer is shorter than a distance between the second surface and the first surface at a central portion of the first electrode layer.
    Type: Application
    Filed: July 26, 2019
    Publication date: January 30, 2020
    Inventors: Yutaka MOMIYAMA, Hitoshi SASAKI
  • Publication number: 20200035468
    Abstract: According to one embodiment, an electrostatic chuck includes a ceramic dielectric substrate, a base plate, and a first electrode layer. The ceramic dielectric substrate has a first major surface and a second major surface. The first electrode layer is provided inside the ceramic dielectric substrate and connected to a high frequency power supply. The first electrode layer is provided between the first major surface and the second major surface. The first electrode layer has a first surface and a second surface. The first electrode layer includes a first region including the first surface, a second region including the second surface, and a third region positioned between the first region and the second region. A porosity of the first region is lower than a porosity of the third region.
    Type: Application
    Filed: July 26, 2019
    Publication date: January 30, 2020
    Inventors: Yutaka MOMIYAMA, Hitoshi SASAKI
  • Publication number: 20200035469
    Abstract: According to one embodiment, an electrostatic chuck includes a ceramic dielectric substrate, a base plate, and a first electrode layer. The ceramic dielectric substrate has a first major surface and a second major surface. The first electrode layer is provided inside the ceramic dielectric substrate and connected to a high frequency power supply. The first electrode layer is provided between the first major surface and the second major surface. The first electrode layer has a first surface and a second surface. A surface roughness of the second surface is larger than a surface roughness of the first surface.
    Type: Application
    Filed: July 26, 2019
    Publication date: January 30, 2020
    Inventors: Yutaka MOMIYAMA, Hitoshi SASAKI
  • Patent number: 10497600
    Abstract: According to the embodiment, the first invention relates to an electrostatic chuck. The electrostatic chuck includes a ceramic dielectric substrate having a first major surface placing a suction object and a second major surface on an opposite side to the first major surface, a base plate supporting the ceramic dielectric substrate and including a gas introduction path, and a first porous part provided at a position between the base plate and the first major surface and being opposite to the gas introduction path. The first porous part includes sparse portions including pores and a dense portion having a density higher than a density of the sparse portions. Each of the sparse portions extends from the base plate toward the ceramic dielectric substrate. The dense portion is positioned between the sparse portions. The sparse portions include a wall portion provided between the pores and the pores.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: December 3, 2019
    Assignee: Toto Ltd.
    Inventors: Kosuke Yamaguchi, Jun Shiraishi, Ikuo Itakura, Yutaka Momiyama, Shuichiro Saigan
  • Publication number: 20190287838
    Abstract: According to the embodiment, the first invention relates to an electrostatic chuck. The electrostatic chuck includes a ceramic dielectric substrate having a first major surface placing a suction object and a second major surface on an opposite side to the first major surface, a base plate supporting the ceramic dielectric substrate and including a gas introduction path, and a first porous part provided at a position between the base plate and the first major surface and being opposite to the gas introduction path. The first porous part includes sparse portions including pores and a dense portion having a density higher than a density of the sparse portions. Each of the sparse portions extends from the base plate toward the ceramic dielectric substrate. The dense portion is positioned between the sparse portions. The sparse portions include a wall portion provided between the pores and the pores.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 19, 2019
    Inventors: Kosuke YAMAGUCHI, Jun SHIRAISHI, Ikuo ITAKURA, Yutaka MOMIYAMA, Shuichiro SAIGAN
  • Publication number: 20190287839
    Abstract: According to the embodiment, the electrostatic chuck includes a ceramic dielectric substrate having a first major surface and a second major surface on an opposite side to the first major surface, a base plate supporting the ceramic dielectric substrate and including a gas introduction path, and a first porous part provided at a position between the base plate and the first major surface and being opposite to the gas introduction path. The ceramic dielectric substrate includes a first hole part positioned between the first major surface and the first porous part. At least one of the ceramic dielectric substrate or the first porous part includes a second hole part positioned between the first hole part and the first porous part, and a dimension of the second hole part is smaller than a dimension of the first porous part and larger than a dimension of the first hole part.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 19, 2019
    Inventors: Kosuke YAMAGUCHI, Jun SHIRAISHI, Ikuo ITAKURA, Yutaka MOMIYAMA, Shuichiro SAIGAN
  • Publication number: 20190287840
    Abstract: According to the embodiment, an electrostatic chuck includes a ceramic dielectric substrate having a first major surface placing a suction object, a second major surface on an opposite side to the first major surface, a base plate supporting the ceramic dielectric substrate and including a gas introduction path, and a first porous part provided at a position between the base plate and the first major surface of the ceramic dielectric substrate and being opposite to the gas introduction path. The first porous part includes a first region positioned on the ceramic dielectric substrate side. The ceramic dielectric substrate includes a first substrate region positioned on the first region side. The first region and the first substrate region are provided in contact with each other, and an average particle diameter in the first region is different from an average particle diameter in the first substrate region.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 19, 2019
    Inventors: Takara KATAYAMA, Kosuke YAMAGUCHI, Ikuo ITAKURA, Yutaka MOMIYAMA, Jun SHIRAISHI, Shuichiro SAIGAN
  • Patent number: 10044049
    Abstract: To provide SOFC and method for manufacturing same, capable of preventing breakage of fuel cell electrodes, and of securing an electrical connection between fuel cells and a current collector. SOFC 1 comprising a cell array composed of fuel cells 16, and current collector 82 connected to electrodes formed on fuel cells 16, wherein current collector 82 is a metal plate on which attaching holes 84 are formed; elastic pieces 84a are provided on each attaching hole 84; current collector 82 is attached to the cell array using elastic pieces 84a, by the insertion of fuel cell 16 into attaching holes 84; and elastic pieces 84a are affixed to fuel cells 16 by electrode protective layer 152 so that the positions of elastic pieces 84a are not displaced relative to the electrodes on fuel cells 16.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: August 7, 2018
    Assignee: TOTO LTD.
    Inventors: Shuhei Tanaka, Naoki Watanabe, Nobuo Isaka, Masaki Sato, Takuya Hoshiko, Osamu Okamoto, Shigeru Ando, Seiki Furuya, Yutaka Momiyama, Yasuo Kakinuma, Kiyoshi Hayama
  • Patent number: 10003088
    Abstract: A solid oxide fuel cell stack includes a support, a plurality of power generation elements provided on a surface of the support, the plurality of power generation elements connected in series, each including at least a fuel electrode, a solid electrolyte, and an air electrode stacked in that order, and an interconnector that electrically connects an air electrode in one of adjacent power generation elements to a fuel electrode in the other power generation element. A solid electrolyte in adjacent one power generation element is provided between a fuel electrode in the adjacent one power generation element and the fuel electrode in the adjacent other power generation element, and an insulating member is provided at a position that is on the solid electrolyte in the adjacent one power generation element and between the air electrode in the adjacent one power generation element and the solid electrolyte therein.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: June 19, 2018
    Assignee: Toto Ltd.
    Inventors: Yasuo Kakinuma, Osamu Okamoto, Shigeru Ando, Hironobu Murakami, Seiki Furuya, Yutaka Momiyama, Kiyoshi Hayama, Naoki Watanabe, Shuhei Tanaka, Nobuo Isaka, Takuya Hoshiko, Masaki Sato
  • Patent number: 9871265
    Abstract: To provide a method for manufacturing SOFC, capable of preventing breakage of fuel cell electrodes, and of securing an electrical connection between fuel cells and a current collector. Step for forming electrode protective layers 152 on electrodes formed on fuel cells 16, modularization step for forming a cell array, and attaching step for attaching a current collector 82 to the cell array, wherein current collector 82 is a metal plate on which attaching holes 84 are formed for the insertion of fuel cells 16, elastic pieces 84a are formed at each attaching hole 84, fuel cells 16 are inserted into attaching holes 84, and current collector 82 is attached to the cell array by the elastic force; and protective layer 152 is constituted to prevent damage to electrodes caused by contact with elastic pieces.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: January 16, 2018
    Assignee: TOTO LTD.
    Inventors: Shuhei Tanaka, Naoki Watanabe, Nobuo Isaka, Masaki Sato, Takuya Hoshiko, Yutaka Momiyama, Shigeru Ando, Osamu Okamoto, Kiyoshi Hayama, Seiki Furuya, Yasuo Kakinuma
  • Patent number: 9755249
    Abstract: A solid oxide fuel cell stack includes a support, a plurality of power generation elements connected in series, each including a fuel electrode, a solid electrolyte, and an air electrode stacked in that order on the support, and an interconnector electrically connecting an air electrode in one of the two adjacent power generation elements to a fuel electrode in the other power generation element. A solid electrolyte for one of the power generation elements is provided on the downside of the interconnector provided on the downside of the air electrode in the one power generation element so that the solid electrolyte is joined to the interconnector, and a solid electrolyte for the other power generation element is provided on the upper side of the interconnector provided on the upper side of the fuel electrode for the other power generation element so that the solid electrolyte is joined to the interconnector.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: September 5, 2017
    Assignee: Toto Ltd.
    Inventors: Yasuo Kakinuma, Osamu Okamoto, Shigeru Ando, Hironobu Murakami, Seiki Furuya, Yutaka Momiyama, Kiyoshi Hayama, Naoki Watanabe, Shuhei Tanaka, Nobuo Isaka, Takuya Hoshiko, Masaki Sato
  • Patent number: 9583773
    Abstract: Provided is a solid oxide fuel cell unit comprising an insulating support, and a power generation element comprising, at least, a fuel electrode, an electrolyte and an air electrode, which are sequentially laminated one another, the power generation element being provided on the insulating support, wherein an exposed insulating support portion, an exposed fuel electrode portion, and an exposed electrolyte portion are provided in an fuel electrode cell end portion.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: February 28, 2017
    Assignee: TOTO LTD.
    Inventors: Shigeru Ando, Naoki Watanabe, Takuya Hoshiko, Shuhei Tanaka, Masaki Sato, Nobuo Isaka, Yutaka Momiyama, Seiki Furuya, Kiyoshi Hayama, Yasuo Kakinuma, Osamu Okamoto
  • Publication number: 20170012312
    Abstract: The solid oxide fuel cell apparatus of the present invention comprises: multiple fuel cells mutually electrically connected to each other; an outside cylindrical member for housing the multiple fuel cells; an oxidant gas supply flow path for supplying oxidant gas to the fuel cells; a fuel gas supply flow path for supplying fuel gas to the fuel cells; a reforming portion for producing fuel gas by reforming raw fuel gas using steam; an evaporating portion for producing steam supplied to the reforming portion; and a fuel gas supply pipe for supplying water evaporated by the evaporating portion; wherein the evaporating portion comprises a sloped plate for dispersing water supplied from the fuel gas supply pipe over the entire evaporating portion using capillary action.
    Type: Application
    Filed: February 3, 2015
    Publication date: January 12, 2017
    Inventors: Naoki WATANABE, Nobuo ISAKA, Masaki SATO, Shuhei TANAKA, Shigeru ANDO, Osamu OKAMOTO, Yasuo KAKINUMA, Kiyoshi HAYAMA, Seiki FURUYA, Yutaka MOMIYAMA
  • Patent number: 9543608
    Abstract: The present invention provides a novel manufacturing method for a solid oxide fuel cell apparatus in which members of the apparatus are joined together with an adhesive, such as a ceramic adhesive. The method implements first and second types of drying and hardening steps. The first type of step may be called a workable hardening step and gives an assembly of members in the solid oxide fuel cell apparatus structural rigidity to go through assembling of the solid oxide fuel cell apparatus. The second type of step may be called a solvent elimination and hardening step and gives the assembled members property to withstand the operation temperature of the solid fuel oxide cell apparatus. The first type of step is performed at a first temperature lower than a second temperature at which the second type of step is performed. The second type of step is performed only after the first type of step is performed at multiple times.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: January 10, 2017
    Assignee: TOTO LTD.
    Inventors: Nobuo Isaka, Naoki Watanabe, Shuhei Tanaka, Takuya Hoshiko, Masaki Sato, Osamu Okamoto, Shigeru Ando, Seiki Furuya, Yutaka Momiyama, Kiyoshi Hayama
  • Publication number: 20160344041
    Abstract: On the other hand, the possibility of estimating the dopant ratio of a metal element to each ceria crystalline particle using integral-width or half-width obtained by XRD was considered as follows: an XRD peak is shifted depending on the dopant ratio of La to ceria; when La increases, an XRD peak is shifted to a lower angle; in XRD performed on a raw material obtained by mixing ceria crystalline particles having different dopant ratio, peaks corresponding to the respective dopant ratio exist close to each other; as a result, a peak width is widened; accordingly, the dopant ratio of a metal element to each ceria crystalline particles are supposed to vary when integral-width and half-width obtained by XRD are large. Thus, it was revealed for the first time that integral-width and half-width obtained by XRD indicate variations in dopant ratio. It should be noted that from the direct proportional relationship between the dopant ratio x and the integral-width for dopant ratio ranging from 0.35 to 0.
    Type: Application
    Filed: August 1, 2016
    Publication date: November 24, 2016
    Applicant: Toto Ltd.
    Inventors: Shigeru Ando, Akira Ishiguro, Akira Kawakami, Megumi Shimazu, Yutaka Momiyama, Yasuo Kakinuma
  • Patent number: 9478811
    Abstract: Provided is a solid oxide fuel cell which includes a fuel electrode, a solid electrolyte, and an air electrode, each being sequentially laminated on the surface of a porous support. The porous support comprises forsterite and a nickel element. Ni and/or NiO fine particles are exposed on a surface of a sintered compact of the forsterite constituting the porous support.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: October 25, 2016
    Assignee: TOTO LTD.
    Inventors: Shigeru Ando, Osamu Okamoto, Kiyoshi Hayama, Seiki Furuya, Yutaka Momiyama, Nobuo Isaka, Masaki Sato, Shuhei Tanaka, Takuya Hoshiko, Naoki Watanabe, Yasuo Kakinuma
  • Patent number: 9461327
    Abstract: Disclosed is a solid oxide fuel cell which includes an inner electrode, a solid electrolyte, and an outer electrode, each being sequentially laminated on the surface of a porous support. The porous support contains forsterite, and further has a strontium element concentration of 0.02 mass % to 1 mass % both inclusive in terms of SrO based on the mass of the forsterite.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: October 4, 2016
    Assignee: TOTO LTD.
    Inventors: Shigeru Ando, Osamu Okamoto, Kiyoshi Hayama, Seiki Furuya, Yutaka Momiyama, Nobuo Isaka, Masaki Sato, Shuhei Tanaka, Takuya Hoshiko, Naoki Watanabe, Yasuo Kakinuma