Patents by Inventor Yutaka Tamaura

Yutaka Tamaura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11387773
    Abstract: A heliostat apparatus including: a frame supporting a solar battery panel; a north-south rotation mechanism having an elevation angle rotation axis for rotating the frame in a north-south direction; an east-west rotation mechanism having an azimuth angle rotation axis for rotating the frame in an east-west direction; and a support, where an angle in the north-south direction of a panel surface of the solar battery panel is adjusted by the north-south rotation mechanism; an angle in the east-west direction of the panel surface is adjusted by the east-west rotation mechanism; the elevation angle rotation axis and the azimuth angle rotation axis are in a skew positional relationship; and the frame is held by a truss structure of each of the north-south rotation mechanism and the east-west rotation mechanism. A type of heliostat apparatus that follows the movement of the sun and can hold a solar battery panel stably.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: July 12, 2022
    Assignee: TRESSBIO LABORATORY CO., LTD.
    Inventor: Yutaka Tamaura
  • Publication number: 20210226577
    Abstract: A heliostat apparatus including: a frame supporting a solar battery panel; a north-south rotation mechanism having an elevation angle rotation axis for rotating the frame in a north-south direction; an east-west rotation mechanism having an azimuth angle rotation axis for rotating the frame in an east-west direction; and a support, where an angle in the north-south direction of a panel surface of the solar battery panel is adjusted by the north-south rotation mechanism; an angle in the east-west direction of the panel surface is adjusted by the east-west rotation mechanism; the elevation angle rotation axis and the azimuth angle rotation axis are in a skew positional relationship; and the frame is held by a truss structure of each of the north-south rotation mechanism and the east-west rotation mechanism. A type of heliostat apparatus that follows the movement of the sun and can hold a solar battery panel stably.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 22, 2021
    Applicant: SOLARFLAME CORPORATION
    Inventor: Yutaka TAMAURA
  • Publication number: 20190165721
    Abstract: Heliostat apparatus, including frame supporting reflection mirror or solar battery panel, gyro mechanism having elevation angle rotation axis for rotating frame in a north-south direction and azimuth angle rotation axis for rotating it in east-west direction, rotation axes being orthogonal to each other, and support for supporting frame through the gyro mechanism, in which frame, reflection mirror and like are integrally rotated in north-south direction with elevation angle rotation axis as rotation axis and angle of reflection surface of reflection mirror and like in north-south direction is adjusted, frame, reflection mirror and like are integrally rotated in east-west direction with azimuth angle rotation axis as rotation axis and angle of reflection surface of reflection mirror and like in east-west direction is adjusted, and center of gravity of a power generation panel is matched with intersection where elevation and azimuth angle rotation axis of gyro mechanism are orthogonal to each other.
    Type: Application
    Filed: June 22, 2017
    Publication date: May 30, 2019
    Applicant: SFI CORPORATION
    Inventor: Yutaka TAMAURA
  • Patent number: 10008977
    Abstract: A heliostat apparatus includes one mirror frame supporting a reflecting mirror; a pair of north-south rotational shafts to rotate the mirror frame in the north-south direction; an east-west rotational shaft to rotate the mirror frame in the east-west direction with the north-south direction as the rotational axis direction; a pair of arms projecting from the east-west rotational shaft to the east and west; an east-west rotational shaft support allowing east-west rotational shaft axial rotation; and the north-south rotational shafts positioned to face each other on the ends of the arms. The mirror frame rotation, etc. as an integrated unit in the east-west direction with the east-west rotational shaft as the rotational axis adjusts a reflecting mirror reflecting surface east-west angle. With the north-south rotational shaft as the rotational axis, the mirror frame rotation in the north-south direction adjusts the north-south angle of at least one reflecting mirror reflecting surface.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: June 26, 2018
    Assignees: SOLARFLAME CORPORATION, MIHAMA CORPORATION
    Inventor: Yutaka Tamaura
  • Patent number: 10006666
    Abstract: Solar heat collecting apparatus, wherein plural reflecting mirrors are disposed in north-south direction; the plural reflecting mirrors are provided with heliostat mechanism; the heliostat mechanism includes an east-west angle adjustment unit, having a rotating ring, to adjust the angle of reflecting surface of the plural reflecting mirrors in the east-west direction, and a north-south angle adjustment unit, having actuators, to adjust angle of reflecting surface of the plural reflecting mirrors in the north-south direction; the angle of reflecting surface of the plural reflecting mirrors on each reflection line is simultaneously adjusted via the frame by rotation of the rotating ring; the angle of reflecting surface of each reflecting mirror is individually adjusted by a back-and-forth motion of an arm of the corresponding actuator; and, each reception line is provided with a receiver, and the receiver collects heat from the reflected light of the sunlight reflected by the plural reflecting mirrors.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: June 26, 2018
    Assignees: SOLARFLAME CORPORATION, MIHAMA CORPORATION
    Inventor: Yutaka Tamaura
  • Patent number: 9739504
    Abstract: The present invention provides a steam generator capable of greatly improving energy efficiency, and an energy supply system that uses the steam generator. The steam generator of the present invention includes a high-temperature chamber to which heat of 250° C. to 800° C. is supplied; a low-temperature chamber arranged adjacent to the high-temperature chamber and configured to produce low-temperature steam of 50° C. to 185° C. from water using the heat of the high-temperature chamber; and at least one thermoelectric element arranged between the high-temperature chamber and the low-temperature chamber.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: August 22, 2017
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, KYUSHU INSTITUTE OF TECHNOLOGY, JGC CORPORATION, SASAKURA ENGINEERING CO., LTD.
    Inventors: Yutaka Tamaura, Yoshiharu Horita, Koji Miyazaki, Kazutaka Hiraoka, Toru Kannari
  • Publication number: 20160226437
    Abstract: A heliostat apparatus includes one mirror frame supporting a reflecting mirror; a pair of north-south rotational shafts to rotate the mirror frame in the north-south direction; an east-west rotational shaft to rotate the mirror frame in the east-west direction with the north-south direction as the rotational axis direction; a pair of arms projecting from the east-west rotational shaft to the east and west; an east-west rotational shaft support allowing east-west rotational shaft axial rotation; and the north-south rotational shafts positioned to face each other on the ends of the arms. The mirror frame rotation, etc. as an integrated unit in the east-west direction with the east-west rotational shaft as the rotational axis adjusts a reflecting mirror reflecting surface east-west angle. With the north-south rotational shaft as the rotational axis, the mirror frame rotation in the north-south direction adjusts the north-south angle of at least one reflecting mirror reflecting surface.
    Type: Application
    Filed: September 10, 2014
    Publication date: August 4, 2016
    Applicants: SOLARFLAME CORPORATION, MIHAMA CORPORATION
    Inventor: Yutaka TAMAURA
  • Patent number: 9372013
    Abstract: The invention provides a solar thermal storage method capable of supplying heat of about 1000-1300 K to an external facility for 24 hours. Disclosed is a solar thermal storage method for storing heat using solar light energy, comprising a concentrated beam irradiation step S1 of irradiating a reactive ceramics layer with a concentrated beam obtained by concentrating solar light to heat the same while moving the reactive ceramics layer formed using reactive ceramics that transforms from an oxidized form to a reduced form with a release of oxygen when heated and returns to the oxidized form when brought into contact with the oxygen; and a thermal storage step S2 of storing the heat emitted from the reactive ceramics layer in thermal storage means while bringing the reactive ceramics layer heated in the concentrated beam irradiation step S1 into contact with gas containing the oxygen.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: June 21, 2016
    Assignee: Tokyo Institute of Technology
    Inventor: Yutaka Tamaura
  • Patent number: 9182146
    Abstract: It is to heighten the heat collecting efficiency of a linear type solar heat collecting apparatus. A plurality of reflection lines and one reception line are included. The reflection lines are arranged in parallel substantially in the south-north direction on earth. Each reflection line L1, L2, . . . has a heliostat 1. The heliostat 1 is composed of a plurality of mirror segments disposed in series on each reflection line L1, L2, . . . . The reception line C extends in the east-west direction perpendicular to the reflection lines L1, L2, . . . , and is disposed at a predetermined position above the reflection lines L1, L2, . . . . The reception line C has a single receiver. The mirror segments disposed on each reflection line L1, L2, . . . radiate reflected light of sunlight that has impinged on the mirror surface toward the reception line C. The receiver 2 disposed on the reception line C collects the heat of the reflected light of sunlight radiated from the mirror segments disposed on each reflection line.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: November 10, 2015
    Assignee: TOKYO INSTITUTE OF TECHNOLOGY
    Inventor: Yutaka Tamaura
  • Publication number: 20150260430
    Abstract: Solar heat collecting apparatus, wherein plural reflecting mirrors are disposed in north-south direction; the plural reflecting mirrors are provided with heliostat mechanism; the heliostat mechanism includes an east-west angle adjustment unit, having a rotating ring, to adjust the angle of reflecting surface of the plural reflecting mirrors in the east-west direction, and a north-south angle adjustment unit, having actuators, to adjust angle of reflecting surface of the plural reflecting mirrors in the north-south direction; the angle of reflecting surface of the plural reflecting mirrors on each reflection line is simultaneously adjusted via the frame by rotation of the rotating ring; the angle of reflecting surface of each reflecting mirror is individually adjusted by a back-and-forth motion of an arm of the corresponding actuator; and, each reception line is provided with a receiver, and the receiver collects heat from the reflected light of the sunlight reflected by the plural reflecting mirrors.
    Type: Application
    Filed: October 18, 2013
    Publication date: September 17, 2015
    Inventor: Yutaka Tamaura
  • Publication number: 20150096552
    Abstract: A linear solar energy collector system includes reflective lines arranged in parallel in a south-north direction, heliostats mounted on the reflective lines, respectively, each comprised of mirror segments to reflect solar radiation, a light receiving line set above the reflective lines in a east-west direction, a receiver mounted on the light receiving line, to receive light reflected from the heliostats and collect heat from the light, and an angular adjuster to adjust angles of the mirror segments individually to irradiate a same light receiving area on the receiver with the reflected light from east-west neighboring reflective lines and thereby adjust a concentration ratio.
    Type: Application
    Filed: March 22, 2013
    Publication date: April 9, 2015
    Inventors: Tatsuya Satoh, Mitsuo Suzuki, Koji Masuda, Takeshi Ueda, Kazuya Nagao, Junichi Kitabayashi, Yutaka Tamaura, Hiroshi Kaneko
  • Patent number: 8726899
    Abstract: Provided is a solar light concentrating system which realizes suppression of power generation costs by applying a receiver 2 that is capable of suppressing a manufacturing cost to a low level, facilitating recovery work when a failure occurs, and quickly recovering a heating medium circulating inside in case of an emergency. The receiver 2 is formed by three-dimensionally combining multiple modules 20. At least a part of the modules is a trapezoid-shaped module 20B. The trapezoid-shaped module includes an upper header 21B, a lower header 22B being shorter than the upper header, and multiple heat receiving tubes 23 which connect the two headers. The heat receiving tubes are formed by successively altering their cross-sectional shapes in away that makes each heat receiving tube shaped like a wedge that becomes narrower from its top toward its bottom in a front view, and like a wedge that becomes wider from its top toward its bottom in a side view.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: May 20, 2014
    Assignee: Tokyo Institute of Technology
    Inventors: Yutaka Tamaura, Hiroshi Hasuike
  • Publication number: 20130269681
    Abstract: The invention provides a solar thermal storage method capable of supplying heat of about 1000-1300 K to an external facility for 24 hours. Disclosed is a solar thermal storage method for storing heat using solar light energy, comprising a concentrated beam irradiation step S1 of irradiating a reactive ceramics layer with a concentrated beam obtained by concentrating solar light to heat the same while moving the reactive ceramics layer formed using reactive ceramics that transforms from an oxidized form to a reduced form with a release of oxygen when heated and returns to the oxidized form when brought into contact with the oxygen; and a thermal storage step S2 of storing the heat emitted from the reactive ceramics layer in thermal storage means while bringing the reactive ceramics layer heated in the concentrated beam irradiation step S1 into contact with gas containing the oxygen.
    Type: Application
    Filed: November 8, 2011
    Publication date: October 17, 2013
    Applicant: TOKYO INSTITUTE OF TECHNOLOGY
    Inventor: Yutaka Tamaura
  • Publication number: 20130152916
    Abstract: It is to heighten the heat collecting efficiency of a linear type solar heat collecting apparatus. A plurality of reflection lines and one reception line are included. The reflection lines are arranged in parallel substantially in the south-north direction on earth. Each reflection line L1, L2, . . . has a heliostat 1. The heliostat 1 is composed of a plurality of mirror segments disposed in series on each reflection line L1, L2, . . . . The reception line C extends in the east-west direction perpendicular to the reflection lines L1, L2, . . . , and is disposed at a predetermined position above the reflection lines L1, L2, . . . The reception line C has a single receiver. The mirror segments disposed on each reflection line L1, L2, . . . radiate reflected light of sunlight that has impinged on the mirror surface toward the reception line C. The receiver 2 disposed on the reception line C collects the heat of the reflected light of sunlight radiated from the mirror segments disposed on each reflection line.
    Type: Application
    Filed: September 29, 2011
    Publication date: June 20, 2013
    Inventor: Yutaka Tamaura
  • Patent number: 8359861
    Abstract: A sunlight collecting system and a solar energy utilization system which collects sunlight with the sunlight collecting system are provided, a sunlight collecting system including a solar heat collector which includes a heat collecting element which is formed by a helically wound heat exchange medium circulation pipe inside which the heat exchange medium flows, in such a way to have an incurved light receiving surface which narrows and converges towards the sunlight inlet and a sunlight collecting reflector which includes a reflector group which includes a plurality of reflector segments each of which includes a reflecting surface which makes sunlight converge on a heat collector, a sunlight collecting system in which a plurality of heliostats Bm are arranged in places which are irradiated by the sunlight between a plurality of heliostats An, in which each of the heliostats An and the heliostats Bm reflect light in a direction to a light collecting point of a heliostat group in which the heliostat is included
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: January 29, 2013
    Assignee: Tokyo Institute of Technology
    Inventors: Yutaka Tamaura, Yoshio Yoshizawa, Motoaki Utamura, Hiroshi Hasuike, Hideyuki Ishihara, Tadahiko Takamatsu
  • Publication number: 20130019598
    Abstract: The present invention provides a steam generator capable of greatly improving energy efficiency, and an energy supply system that uses the steam generator. The steam generator of the present invention includes a high-temperature chamber to which heat of 250° C. to 800° C. is supplied; a low-temperature chamber arranged adjacent to the high-temperature chamber and configured to produce low-temperature steam of 50° C. to 185° C. from water using the heat of the high-temperature chamber; and at least one thermoelectric element arranged between the high-temperature chamber and the low-temperature chamber.
    Type: Application
    Filed: December 3, 2010
    Publication date: January 24, 2013
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, SASAKURA ENGINEERING CO., LTD., JGC CORPORATION, KYUSHU INSTITUTE OF TECHNOLOGY
    Inventors: Yutaka Tamaura, Yoshiharu Horita, Koji Miyazaki, Kazutaka Hiraoka, Toru Kannari
  • Publication number: 20120227731
    Abstract: Provided is a solar light concentrating system which realizes suppression of power generation costs by applying a receiver 2 that is capable of suppressing a manufacturing cost to a low level, facilitating recovery work when a failure occurs, and quickly recovering a heating medium circulating inside in case of an emergency. The receiver 2 is formed by three-dimensionally combining multiple modules 20. At least a part of the modules is a trapezoid-shaped module 20B. The trapezoid-shaped module includes an upper header 21B, a lower header 22B being shorter than the upper header, and multiple heat receiving tubes 23 which connect the two headers. The heat receiving tubes are formed by successively altering their cross-sectional shapes in away that makes each heat receiving tube shaped like a wedge that becomes narrower from its top toward its bottom in a front view, and like a wedge that becomes wider from its top toward its bottom in a side view.
    Type: Application
    Filed: August 11, 2010
    Publication date: September 13, 2012
    Applicant: Tokyo Institute of Technology
    Inventors: Yutaka Tamaura, Hiroshi Hasuike
  • Publication number: 20110259320
    Abstract: It enhances heat collecting efficiency of sunlight received by heliostats. It is a solar light collecting method in a multi-tower beam-down light collecting system, including a tower selection. The multi-tower beam-down light collecting system is a system in which, in a field where a plurality of beam-down light collecting towers are present, light primarily reflected by heliostats 1 around each tower 4 is secondarily reflected by a reflector 3 at a top part of the tower 4 and is collected on a receiver 3 on the ground, and the tower selection is a process in which, assuming that the heliostat 1 in a given position receives sunlight and reflects the sunlight toward each of optionally selected two of the towers 4, 4, a light receiving quantity on the receiver 3 of each of the towers 4 is compared, and one of the towers 4 in which the light receiving quantity is relatively large is selected to reflect the sunlight toward the one of the towers 4.
    Type: Application
    Filed: July 23, 2009
    Publication date: October 27, 2011
    Applicants: ABU DHABI FUTURE ENERGY COMPANY PJSC, COSMO OIL CO., LTD.
    Inventors: Minoru Yuasa, Hiroshi Hasuike, Yutaka Tamaura
  • Publication number: 20090173337
    Abstract: A sunlight collecting system and a solar energy utilization system which collects sunlight with the sunlight collecting system are provided, a sunlight collecting system including a solar heat collector which includes a heat collecting element which is formed by a helically wound heat exchange medium circulation pipe inside which the heat exchange medium flows, in such a way to have an incurved light receiving surface which narrows and converges towards the sunlight inlet and a sunlight collecting reflector which includes a reflector group which includes a plurality of reflector segments each of which includes a reflecting surface which makes sunlight converge on a heat collector, a sunlight collecting system in which a plurality of heliostats Bm are arranged in places which are irradiated by the sunlight between a plurality of heliostats An, in which each of the heliostats An and the heliostats Bm reflect light in a direction to a light collecting point of a heliostat group in which the heliostat is included
    Type: Application
    Filed: August 31, 2005
    Publication date: July 9, 2009
    Inventors: Yutaka Tamaura, Yoshio Yoshizawa, Motoaki Utamura, Hiroshi Hasuike, Hideyuki Ishihara, Tadahiko Takamatsu
  • Patent number: 5897810
    Abstract: Shell fossil powder is added to a flocculation agent which is mainly composed of gypsum and silicate compound, and the mixture is added to a suspension. The mixing ratio of the flocculation agent and shell fossil powder is 3:1. The flocculation agent functions as a coagulation core A, and the shell fossil powder is able to absorb grains in the suspension as a carrier B and is acquired by the coagulation core A. The carrier B is a grain which is able to effectively utilize Ca.sup.2+ flocculation site of the coagulation core A, which absorbs a great deal of suspending grains, wherein the suspending grains are acquired by the coagulation core A and form a large flock and are quickly settled.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: April 27, 1999
    Assignees: Yutaka Tamaura, Chiiki Shinko Jigyo-dan Co., Ltd.
    Inventors: Yutaka Tamaura, Takashi Kiryu