Patents by Inventor Yuuichi Hori

Yuuichi Hori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200099062
    Abstract: An intermediate layer containing CeO2 with which a rare earth element (excluding Ce) forms a solid solution and a first electrode layer may be disposed in this order on a surface on one side of a solid electrolyte layer containing Zr, and a second electrode layer may be disposed on a surface on another side opposite the surface of the one side of the solid electrolyte layer. The intermediate layer includes a first layer located closer to the solid electrolyte layer and a second layer disposed on the first layer and located closer to the first electrode layer, and a concentration of the rare earth element of the first layer may be greater than a concentration of the rare earth element of the second layer.
    Type: Application
    Filed: December 19, 2017
    Publication date: March 26, 2020
    Inventors: Akihiro HARA, Yuuichi HORI
  • Patent number: 10367220
    Abstract: A solid oxide fuel cell having an electric power generating element unit that is configured by sandwiching a solid electrolyte layer between a fuel electrode layer and an oxygen electrode layer with a pore that is present in the solid electrolyte layer and is covered with a sealing material. In addition, a pore that is present in an interconnector, which is electrically connected to the fuel electrode layer or the oxygen electrode layer, is covered with the sealing material. Consequently, the solid oxide fuel cell is capable of easily preventing gas leakage.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: July 30, 2019
    Assignee: Kyocera Corporation
    Inventors: Yuuichi Hori, Akihiro Hara
  • Patent number: 10014542
    Abstract: A cell of the present disclosure includes a support body having a pillar shape, containing nickel, and including a gas-flow passage passing through an interior of the support body in a longitudinal direction, a first end portion including an outlet of the gas-flow passage, and a second end portion including an inlet of the gas-flow passage, a first electrode layer located upon the support body, a solid electrolyte layer located upon the first electrode layer, and a second electrode layer located upon the solid electrolyte layer. The support body has a lower metallic nickel content at the first end portion than at a central portion in the longitudinal direction. As such, the cell is capable of suppressing damage.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: July 3, 2018
    Assignee: KYOCERA Corporation
    Inventors: Yuuichi Hori, Akihiro Hara
  • Patent number: 9780382
    Abstract: The invention relates to a fuel cell having superior durability by suppressing a reaction between a component contained in a solid electrolyte and an oxygen-side electrode during a long-period operation, a fuel cell stack and a fuel cell apparatus using thereof. A fuel cell (10) includes a solid electrolyte (9) containing Zr, an intermediate layer (4) and an oxygen-side electrode (1) that are disposed in this order on one surface of the solid electrolyte (9), and a fuel-side electrode (7) disposed on another surface opposed to the oxygen-side electrode (1) of the solid electrolyte (9). The intermediate layer (4) includes a surface layer region (4a) that contains Zr and is on a side of the solid electrolyte (9), and another region (4b) except the surface layer region (4a) that does not contain Zr. Accordingly, it is possible to suppress a reaction between Zr and the oxygen-side electrode (1) and suppress power generation performance degradation of the fuel cell (10).
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: October 3, 2017
    Assignee: KYOCERA CORPORATION
    Inventor: Yuuichi Hori
  • Publication number: 20170207473
    Abstract: A cell of the present disclosure includes a support body having a pillar shape, containing nickel, and including a gas-flow passage passing through an interior of the support body in a longitudinal direction, a first end portion including an outlet of the gas-flow passage, and a second end portion including an inlet of the gas-flow passage, a first electrode layer located upon the support body, a solid electrolyte layer located upon the first electrode layer, and a second electrode layer located upon the solid electrolyte layer. The support body has a lower metallic nickel content at the first end portion than at a central portion in the longitudinal direction. As such, the cell is capable of suppressing damage.
    Type: Application
    Filed: October 28, 2015
    Publication date: July 20, 2017
    Inventors: Yuuichi HORI, Akihiro HARA
  • Publication number: 20170187049
    Abstract: A solid oxide fuel cell having an electric power generating element unit that is configured by sandwiching a solid electrolyte layer between a fuel electrode layer and an oxygen electrode layer with a pore that is present in the solid electrolyte layer and is covered with a sealing material. In addition, a pore that is present in an interconnector, which is electrically connected to the fuel electrode layer or the oxygen electrode layer, is covered with the sealing material. Consequently, the solid oxide fuel cell is capable of easily preventing gas leakage.
    Type: Application
    Filed: March 10, 2017
    Publication date: June 29, 2017
    Inventors: Yuuichi Hori, Akihiro Hara
  • Patent number: 9627697
    Abstract: A solid oxide fuel cell having an electric power generating element unit that is configured by sandwiching a solid electrolyte layer between a fuel electrode layer and an oxygen electrode layer with a pore that is present in the solid electrolyte layer and is covered with a sealing material. In addition, a pore that is present in an interconnector, which is electrically connected to the fuel electrode layer or the oxygen electrode layer, is covered with the sealing material. Consequently, the solid oxide fuel cell is capable of easily preventing gas leakage.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: April 18, 2017
    Assignee: KYOCERA CORPORATION
    Inventors: Yuuichi Hori, Akihiro Hara
  • Patent number: 8993194
    Abstract: A fuel cell includes a solid electrolyte layer containing Zr; an intermediate layer containing CeO2 solid solution having a rare-earth element excluding Ce; an air electrode layer containing Sr, the intermediate layer and the air electrode layer being stacked in this order on one surface of the solid electrolyte layer; and a fuel electrode layer on another surface of the solid electrolyte layer which is opposite to the one surface. A value obtained by dividing a content of the rare-earth element excluding Ce by a content of Zr is equal to or less than 0.05 at a site of the solid electrolyte layer, the site being 1 ?m away from an interface between the solid electrolyte layer and the intermediate layer.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: March 31, 2015
    Assignee: KYOCERA Corporation
    Inventors: Tetsurou Fujimoto, Yuuichi Hori, Takayuki Iwamoto
  • Publication number: 20140080029
    Abstract: A solid oxide fuel cell having an electric power generating element unit that is configured by sandwiching a solid electrolyte layer between a fuel electrode layer and an oxygen electrode layer with a pore that is present in the solid electrolyte layer and is covered with a sealing material. In addition, a pore that is present in an interconnector, which is electrically connected to the fuel electrode layer or the oxygen electrode layer, is covered with the sealing material. Consequently, the solid oxide fuel cell is capable of easily preventing gas leakage.
    Type: Application
    Filed: May 29, 2012
    Publication date: March 20, 2014
    Inventors: Yuuichi Hori, Akihiro Hara
  • Publication number: 20130052559
    Abstract: A fuel cell capable of suppressing deformation resulting from reduction treatment, a fuel cell device, a fuel cell module, and a fuel cell apparatus are provided, A fuel cell includes a solid electrolyte layer, a fuel electrode layer disposed on the solid electrolyte layer, and an interconnector and an adjustment layer which are disposed on the fuel electrode layer, the interconnector expanding in a reduction atmosphere and the adjustment layer shrinking in a reduction atmosphere, or the interconnector shrinking in a reduction atmosphere and the adjustment layer expanding in a reduction atmosphere. Accordingly, a fuel cell capable of suppressing deformation resulting from reduction treatment can be provided.
    Type: Application
    Filed: January 26, 2011
    Publication date: February 28, 2013
    Applicant: KYOCERA CORPORATION
    Inventors: Yuuichi Hori, Tetsurou Fujimoto, Masashi Kawakami
  • Patent number: 8338053
    Abstract: The invention relates to a conductive sintered body capable of being effectively prevented from reduction-induced expansion, as well as to a conductive member for fuel cell, a fuel cell, and a fuel cell apparatus. The conductive sintered body contains a first composite oxide phase (59) based on lanthanum chromite and a second composite oxide phase (55) containing Mg and Ni, and around the second composite oxide phase (55), Ni (57) is deposited. Such a conductive sintered body is used for fuel cell. Further, a conductive member for such a fuel cell is composed of a fuel electrode layer (32) and an oxide electrode layer (34) with a solid electrolyte layer (33) held therebetween; and is used as an interconnector (35) of a fuel cell (30) which is provided with the interconnector (35) connected to the fuel electrode layer (32).
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: December 25, 2012
    Assignee: Kyocera Corporation
    Inventors: Tetsuro Fujimoto, Yuuichi Hori
  • Publication number: 20120189939
    Abstract: A fuel cell includes a solid electrolyte layer containing Zr; an intermediate layer containing CeO2 solid solution having a rare-earth element excluding Ce; an air electrode layer containing Sr, the intermediate layer and the air electrode layer being stacked in this order on one surface of the solid electrolyte layer; and a fuel electrode layer on another surface of the solid electrolyte layer which is opposite to the one surface. A value obtained by dividing a content of the rare-earth element excluding Ce by a content of Zr is equal to or less than 0.05 at a site of the solid electrolyte layer, the site being 1 ?m away from an interface between the solid electrolyte layer and the intermediate layer.
    Type: Application
    Filed: October 28, 2010
    Publication date: July 26, 2012
    Applicant: KYOCERA CORPORATION
    Inventors: Tetsurou Fujimoto, Yuuichi Hori, Takayuki Iwamoto
  • Publication number: 20100266925
    Abstract: The invention relates to a fuel cell having superior durability by suppressing a reaction between a component contained in a solid electrolyte and an oxygen-side electrode during a long-period operation, a fuel cell stack and a fuel cell apparatus using thereof. A fuel cell (10) includes a solid electrolyte (9) containing Zr, an intermediate layer (4) and an oxygen-side electrode (1) that are disposed in this order on one surface of the solid electrolyte (9), and a fuel-side electrode (7) disposed on another surface opposed to the oxygen-side electrode (1) of the solid electrolyte (9). The intermediate layer (4) includes a surface layer region (4a) that contains Zr and is on a side of the solid electrolyte (9), and another region (4b) except the surface layer region (4a) that does not contain Zr. Accordingly, it is possible to suppress a reaction between Zr and the oxygen-side electrode (1) and suppress power generation performance degradation of the fuel cell (10).
    Type: Application
    Filed: August 24, 2007
    Publication date: October 21, 2010
    Applicant: KYOCERA CORPORATION
    Inventor: Yuuichi Hori
  • Publication number: 20090011306
    Abstract: The invention relates to a conductive sintered body capable of being effectively prevented from reduction-induced expansion, as well as to a conductive member for fuel cell, a fuel cell, and a fuel cell apparatus. The conductive sintered body contains a first composite oxide phase (59) based on lanthanum chromite and a second composite oxide phase (55) containing Mg and Ni, and around the second composite oxide phase (55), Ni (57) is deposited. Such a conductive sintered body is used for fuel cell. Further, a conductive member for such a fuel cell is composed of a fuel electrode layer (32) and an oxide electrode layer (34) with a solid electrolyte layer (33) held therebetween; and is used as an interconnector (35) of a fuel cell (30) which is provided with the interconnector (35) connected to the fuel electrode layer (32).
    Type: Application
    Filed: January 22, 2007
    Publication date: January 8, 2009
    Applicant: KYOCERA CORPORATION
    Inventors: Tetsuro Fujimoto, Yuuichi Hori
  • Patent number: 7297436
    Abstract: A solid electrolytic fuel cell having an oxygen electrode layer on one surface of a solid electrolytic layer, having a fuel electrode layer on the other surface thereof, and having a reaction-preventing layer comprising a sintered body of an oxide between the upper surface of the solid electrolytic layer and the oxygen electrode layer for preventing elements from diffusing from the oxygen electrode layer into the solid electrolytic layer, wherein the oxygen electrode layer has a two-layer structure including an inner layer on the side of the reaction-preventing layer and a surface layer on the inner layer; the surface layer of the oxygen electrode layer comprises a sintered body of a perovskite composite oxide; and the inner layer of the oxygen electrode layer comprises a sintered body of a mixture of particles of an oxide for preventing the diffusion of elements and particles of the peroviskite composite oxide, and is formed more densely than said surface layer.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: November 20, 2007
    Assignee: Kyocera Corporation
    Inventor: Yuuichi Hori
  • Publication number: 20050095496
    Abstract: A solid electrolytic fuel cell having an oxygen electrode layer on one surface of a solid electrolytic layer, having a fuel electrode layer on the other surface thereof, and having a reaction-preventing layer comprising a sintered body of an oxide between the upper surface of the solid electrolytic layer and the oxygen electrode layer for preventing elements from diffusing from the oxygen electrode layer into the solid electrolytic layer, wherein the oxygen electrode layer has a two-layer structure including an inner layer on the side of the reaction-preventing layer and a surface layer on the inner layer; the surface layer of the oxygen electrode layer comprises a sintered body of a perovskite composite oxide; and the inner layer of the oxygen electrode layer comprises a sintered body of a mixture of particles of an oxide for preventing the diffusion of elements and particles of the peroviskite composite oxide, and is formed more densely than said surface layer.
    Type: Application
    Filed: October 29, 2004
    Publication date: May 5, 2005
    Inventor: Yuuichi Hori
  • Patent number: 6353528
    Abstract: Disclosed is a solid activated carbon and a process for manufacturing the solid activated carbon which is particularly suitable for electrode materials used in an electric double layer capacitor and various batteries. The use of the solid activated carbon makes it possible to prepare an activated carbon substrate having high mechanical strength and practical capacitance while the content of activated carbon is high. The solid activated carbon comprises an activated carbon powder and/or an activated carbon fiber, a carburized substance of a PVA or a resin derived from PVA, and a PVA or a resin derived from PVA. The process for manufacturing the solid activated carbon comprises, molding a molding material consisting of an activated carbon powder and/or an activated carbon fiber, a PVA or a resin derived from PVA or a mixture of a PVA or a resin derived from PVA and a mesophase using a known molding method, aging the molded compact in air and heat-treating the aged compact in a non-oxidizing atmosphere.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: March 5, 2002
    Assignee: Kyocera Corporation
    Inventors: Yuuichi Hori, Shinya Matsuno, Naotomo Hokajou, Masaki Hara