Patents by Inventor Yuval Tassa
Yuval Tassa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12367391Abstract: Methods, systems, and apparatus for selecting actions to be performed by an agent interacting with an environment. One system includes a high-level controller neural network, low-level controller network, and subsystem. The high-level controller neural network receives an input observation and processes the input observation to generate a high-level output defining a control signal for the low-level controller. The low-level controller neural network receives a designated component of an input observation and processes the designated component and an input control signal to generate a low-level output that defines an action to be performed by the agent in response to the input observation.Type: GrantFiled: December 27, 2023Date of Patent: July 22, 2025Assignee: DeepMind Technologies LimitedInventors: Nicolas Manfred Otto Heess, Timothy Paul Lillicrap, Gregory Duncan Wayne, Yuval Tassa
-
Publication number: 20240177002Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an actor neural network used to select actions to be performed by an agent interacting with an environment. One of the methods includes obtaining a minibatch of experience tuples; and updating current values of the parameters of the actor neural network, comprising: for each experience tuple in the minibatch: processing the training observation and the training action in the experience tuple using a critic neural network to determine a neural network output for the experience tuple, and determining a target neural network output for the experience tuple; updating current values of the parameters of the critic neural network using errors between the target neural network outputs and the neural network outputs; and updating the current values of the parameters of the actor neural network using the critic neural network.Type: ApplicationFiled: October 30, 2023Publication date: May 30, 2024Inventors: Timothy Paul Lillicrap, Jonathan James Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez, Yuval Tassa, David Silver, Daniel Pieter Wierstra
-
Patent number: 11875258Abstract: Methods, systems, and apparatus for selecting actions to be performed by an agent interacting with an environment. One system includes a high-level controller neural network, low-level controller network, and subsystem. The high-level controller neural network receives an input observation and processes the input observation to generate a high-level output defining a control signal for the low-level controller. The low-level controller neural network receives a designated component of an input observation and processes the designated component and an input control signal to generate a low-level output that defines an action to be performed by the agent in response to the input observation.Type: GrantFiled: December 2, 2021Date of Patent: January 16, 2024Assignee: DeepMind Technologies LimitedInventors: Nicolas Manfred Otto Heess, Timothy Paul Lillicrap, Gregory Duncan Wayne, Yuval Tassa
-
Patent number: 11803750Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an actor neural network used to select actions to be performed by an agent interacting with an environment. One of the methods includes obtaining a minibatch of experience tuples; and updating current values of the parameters of the actor neural network, comprising: for each experience tuple in the minibatch: processing the training observation and the training action in the experience tuple using a critic neural network to determine a neural network output for the experience tuple, and determining a target neural network output for the experience tuple; updating current values of the parameters of the critic neural network using errors between the target neural network outputs and the neural network outputs; and updating the current values of the parameters of the actor neural network using the critic neural network.Type: GrantFiled: September 14, 2020Date of Patent: October 31, 2023Assignee: DeepMind Technologies LimitedInventors: Timothy Paul Lillicrap, Jonathan James Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez, Yuval Tassa, David Silver, Daniel Pieter Wierstra
-
Patent number: 11210585Abstract: Methods, systems, and apparatus for selecting actions to be performed by an agent interacting with an environment. One system includes a high-level controller neural network, low-level controller network, and subsystem. The high-level controller neural network receives an input observation and processes the input observation to generate a high-level output defining a control signal for the low-level controller. The low-level controller neural network receives a designated component of an input observation and processes the designated component and an input control signal to generate a low-level output that defines an action to be performed by the agent in response to the input observation.Type: GrantFiled: May 12, 2017Date of Patent: December 28, 2021Assignee: DeepMind Technologies LimitedInventors: Nicolas Manfred Otto Heess, Timothy Paul Lillicrap, Gregory Duncan Wayne, Yuval Tassa
-
Publication number: 20200410351Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an actor neural network used to select actions to be performed by an agent interacting with an environment. One of the methods includes obtaining a minibatch of experience tuples; and updating current values of the parameters of the actor neural network, comprising: for each experience tuple in the minibatch: processing the training observation and the training action in the experience tuple using a critic neural network to determine a neural network output for the experience tuple, and determining a target neural network output for the experience tuple; updating current values of the parameters of the critic neural network using errors between the target neural network outputs and the neural network outputs; and updating the current values of the parameters of the actor neural network using the critic neural network.Type: ApplicationFiled: September 14, 2020Publication date: December 31, 2020Inventors: Timothy Paul Lillicrap, Jonathan James Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez, Yuval Tassa, David Silver, Daniel Pieter Wierstra
-
Patent number: 10776692Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an actor neural network used to select actions to be performed by an agent interacting with an environment. One of the methods includes obtaining a minibatch of experience tuples; and updating current values of the parameters of the actor neural network, comprising: for each experience tuple in the minibatch: processing the training observation and the training action in the experience tuple using a critic neural network to determine a neural network output for the experience tuple, and determining a target neural network output for the experience tuple; updating current values of the parameters of the critic neural network using errors between the target neural network outputs and the neural network outputs; and updating the current values of the parameters of the actor neural network using the critic neural network.Type: GrantFiled: July 22, 2016Date of Patent: September 15, 2020Assignee: DeepMind Technologies LimitedInventors: Timothy Paul Lillicrap, Jonathan James Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez, Yuval Tassa, David Silver, Daniel Pieter Wierstra
-
Publication number: 20170024643Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an actor neural network used to select actions to be performed by an agent interacting with an environment. One of the methods includes obtaining a minibatch of experience tuples; and updating current values of the parameters of the actor neural network, comprising: for each experience tuple in the minibatch: processing the training observation and the training action in the experience tuple using a critic neural network to determine a neural network output for the experience tuple, and determining a target neural network output for the experience tuple; updating current values of the parameters of the critic neural network using errors between the target neural network outputs and the neural network outputs; and updating the current values of the parameters of the actor neural network using the critic neural network.Type: ApplicationFiled: July 22, 2016Publication date: January 26, 2017Inventors: Timothy Paul Lillicrap, Jonathan James Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez, Yuval Tassa, David Silver, Daniel Pieter Wierstra