Patents by Inventor Yu-Wei Wu

Yu-Wei Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240155808
    Abstract: A two-phase immersion-cooling heat-dissipation composite structure is provided. The heat-dissipation composite structure includes a heat dissipation base, a plurality of high-thermal-conductivity fins, and at least one high-porosity solid structure. The heat dissipation base has a first surface and a second surface that face away from each other. The second surface of the heat dissipation base is in contact with a heating element immersed in a two-phase coolant. The first surface of the heat dissipation base is connected to the high-thermal-conductivity fins. The at least one high-porosity solid structure is located at the first surface of the heat dissipation base, and is connected and alternately arranged between side walls of two adjacent ones of the high-thermal-conductivity fins. Each of the high-porosity solid structure includes a plurality of closed holes and a plurality of open holes.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 9, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240155807
    Abstract: A two-phase immersion-type heat dissipation structure having acute-angle notched structures is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, and a plurality of fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other, the non-fin surface is configured to be in contact with a heat source immersed in a two-phase coolant, and the fin surface is connected with the fins. More than half of the fins are functional fins, and at least one side surface of each of the functional fins has first and second surfaces defined thereon and connected to each other. An angle between the first surface and the fin surface is from 80 degrees to 100 degrees, and an angle between the second surface and the fin surface is less than 75 degrees.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 9, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240155809
    Abstract: A two-phase immersion-type heat dissipation structure having fins for facilitating bubble generation is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, and a plurality of fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other, the non-fin surface is configured to be in contact with a heat source immersed in a two-phase coolant, and the fin surface is connected with the plurality of fins. More than half of the fins are functional fins, and at least one side surface of each of the functional fins and the fin surface have an included angle therebetween that is from 80 degrees to 100 degrees. A center line average roughness (Ra) of the side surface is less than 3 ?m, and a ten-point average roughness (Rz) of the side surface is not less than 12 ?m.
    Type: Application
    Filed: November 6, 2022
    Publication date: May 9, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240142181
    Abstract: A two-phase immersion-type heat dissipation structure having skived fin with high porosity is provided. The two-phase immersion-type heat dissipation structure having skived fin with high porosity includes a porous heat dissipation structure having a total porosity that is equal to or greater than 5%. The porous heat dissipation structure includes a porous substrate and a plurality of porous and skived fins. The porous substrate has a first surface and a second surface that face away from each other. The second surface of the porous substrate is configured to be in contact with a heating element that is immersed in a two-phase coolant. The plurality of porous and skived fins are integrally formed on the first surface of the porous substrate by skiving. A first porosity of the plurality of porous and skived fins is greater than a second porosity of the porous substrate.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 2, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240139262
    Abstract: The present disclosure relates to a complex probiotic composition and a method for improving exercise performance of a subject with low intrinsic aerobic exercise capacity. The complex probiotic composition, which includes Lactobacillus rhamnosus GKLC1, Bifidobacterium lactis GKK24 and Clostridium butyricum GKB7, administered to the subject with the low intrinsic aerobic exercise capacity in a continuation period, can effectively reduce serum lactic acid and serum urea nitrogen after aerobic exercise, reduce proportion of offal fat and/or increase liver and muscle glycogen contents, thereby being as an effective ingredient for preparation of various compositions.
    Type: Application
    Filed: October 13, 2023
    Publication date: May 2, 2024
    Inventors: Chin-Chu CHEN, Yen-Lien CHEN, Shih-Wei LIN, Yen-Po CHEN, Ci-Sian WANG, Yu-Hsin HOU, Yang-Tzu SHIH, Ching-Wen LIN, Ya-Jyun CHEN, Jia-Lin JIANG, You-Shan TSAI, Zi-He WU
  • Publication number: 20240147711
    Abstract: The present disclosure provides a memory device, a semiconductor device, and a method of operating a memory device. A memory device includes a memory cell, a bit line, a word line, a select transistor, a fuse element, and a heater. The bit line is connected to the memory cell. The word line is connected to the memory cell. The select transistor is disposed in the memory cell. A gate of the select transistor is connected to the word line. The fuse element is disposed in the memory cell. The fuse element is connected to the bit line and the select transistor. The heater is configured to heat the fuse element.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Inventors: PERNG-FEI YUH, YIH WANG, MENG-SHENG CHANG, JUI-CHE TSAI, KU-FENG LIN, YU-WEI LIN, KEH-JENG CHANG, CHANSYUN DAVID YANG, SHAO-TING WU, SHAO-YU CHOU, PHILEX MING-YAN FAN, YOSHITAKA YAMAUCHI, TZU-HSIEN YANG
  • Patent number: 11964881
    Abstract: A method for making iridium oxide nanoparticles includes dissolving an iridium salt to obtain a salt-containing solution, mixing a complexing agent with the salt-containing solution to obtain a blend solution, and adding an oxidating agent to the blend solution to obtain a product mixture. A molar ratio of a complexing compound of the complexing agent to the iridium salt is controlled in a predetermined range so as to permit the product mixture to include iridium oxide nanoparticles.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: April 23, 2024
    Assignee: NATIONAL YANG MING CHIAO TUNG UNIVERSITY
    Inventors: Pu-Wei Wu, Yi-Chieh Hsieh, Han-Yi Wang, Kuang-Chih Tso, Tzu-Ying Chan, Chung-Kai Chang, Chi-Shih Chen, Yu-Ting Cheng
  • Publication number: 20240124163
    Abstract: A magnetic multi-pole propulsion array system is applied to at least one external cathode and includes a plurality of magnetic multi-pole thrusters connected adjacent to each other. Each magnetic multi-pole thruster includes a propellant provider, a discharge chamber, an anode and a plurality of magnetic components. The propellant provider outputs propellant. The discharge chamber is connected with the propellant provider to accommodate the propellant. The anode is disposed inside the discharge chamber to generate an electric field. The plurality of magnetic components is respectively disposed on several sides of the discharge chamber. One of the several sides of the discharge chamber of the magnetic multi-pole thruster is applied for one side of a discharge chamber of another magnetic multi-pole thruster.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 18, 2024
    Applicant: National Cheng Kung University
    Inventors: Yueh-Heng Li, Yu-Ting Wu, Chao-Wei Huang, Wei-Cheng Lo, Hsun-Chen Hsieh, Ping-Han Huang, Yi-Long Huang, Sheng-Wen Liu, Wei-Cheng Lien
  • Patent number: 11961810
    Abstract: An embodiment bump on trace (BOT) structure includes a contact element supported by an integrated circuit, an under bump metallurgy (UBM) feature electrically coupled to the contact element, a metal ladder bump mounted on the under bump metallurgy feature, the metal ladder bump having a first tapering profile, and a substrate trace mounted on a substrate, the substrate trace having a second tapering profile and coupled to the metal ladder bump through direct metal-to-metal bonding. An embodiment chip-to-chip structure may be fabricated in a similar fashion.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yu-Wei Lin, Sheng-Yu Wu, Yu-Jen Tseng, Tin-Hao Kuo, Chen-Shien Chen
  • Publication number: 20240120203
    Abstract: A method includes forming a dummy gate over a semiconductor fin; forming a source/drain epitaxial structure over the semiconductor fin and adjacent to the dummy gate; depositing an interlayer dielectric (ILD) layer to cover the source/drain epitaxial structure; replacing the dummy gate with a gate structure; forming a dielectric structure to cut the gate structure, wherein a portion of the dielectric structure is embedded in the ILD layer; recessing the portion of the dielectric structure embedded in the ILD layer; after recessing the portion of the dielectric structure, removing a portion of the ILD layer over the source/drain epitaxial structure; and forming a source/drain contact in the ILD layer and in contact with the portion of the dielectric structure.
    Type: Application
    Filed: March 8, 2023
    Publication date: April 11, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Chih HSIUNG, Yun-Hua CHEN, Bing-Sian WU, Yi-Hsuan CHIU, Yu-Wei CHANG, Wen-Kuo HSIEH, Chih-Yuan TING, Huan-Just LIN
  • Publication number: 20240120313
    Abstract: A chip package structure is provided. The chip package structure includes a chip. The chip package structure includes a conductive ring-like structure over and electrically insulated from the chip. The conductive ring-like structure surrounds a central region of the chip. The chip package structure includes a first solder structure over the conductive ring-like structure. The first solder structure and the conductive ring-like structure are made of different materials.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Inventors: Sheng-Yao YANG, Ling-Wei LI, Yu-Jui WU, Cheng-Lin HUANG, Chien-Chen LI, Lieh-Chuan CHEN, Che-Jung CHU, Kuo-Chio LIU
  • Patent number: 11953052
    Abstract: A fastener is adapted for assembling a first housing to a second housing. The first housing is provided with a protruding portion and a buckling portion, and the second housing has a first surface, a second surface, and a through hole. The fastener includes a first portion, at least one connecting portion, at least two elastic portions, and a second portion. The first portion movably abuts against the first surface and has a first opening. The connecting portion is accommodated in the through hole. One end of the connecting portion is connected to the first portion. The connecting portion is spaced apart from an inner edge of the second housing by a gap. The two elastic portions inclinedly extend into the first opening. The second portion movably abuts against the second surface and is disposed at the another end of the connecting portion.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: April 9, 2024
    Assignee: PEGATRON CORPORATION
    Inventors: Jian-Hua Chen, Po-Tsung Shih, Yu-Wei Lin, Ming-Hua Ho, Chih-Hao Wu
  • Publication number: 20240113234
    Abstract: An integrated chip including a gate layer. An insulator layer is over the gate layer. A channel structure is over the insulator layer. A pair of source/drains are over the channel structure and laterally spaced apart by a dielectric layer. The channel structure includes a first channel layer between the insulator layer and the pair of source/drains, a second channel layer between the insulator layer and the dielectric layer, and a third channel layer between the second channel layer and the dielectric layer. The first channel layer, the second channel layer, and the third channel layer include different semiconductors.
    Type: Application
    Filed: January 4, 2023
    Publication date: April 4, 2024
    Inventors: Ya-Yun Cheng, Wen-Ling Lu, Yu-Chien Chiu, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11943935
    Abstract: A layout pattern of a magnetoresistive random access memory (MRAM) includes a substrate having a first cell region, a second cell region, a third cell region, and a fourth cell region and a diffusion region on the substrate extending through the first cell region, the second cell region, the third cell region, and the fourth cell region. Preferably, the diffusion region includes a H-shape according to a top view.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: March 26, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Yen Tseng, Shu-Ru Wang, Yu-Tse Kuo, Chang-Hung Chen, Yi-Ting Wu, Shu-Wei Yeh, Ya-Lan Chiou, Chun-Hsien Huang
  • Publication number: 20240097067
    Abstract: A manufacturing method of an electronic element module is provided. The method includes: disposing a plurality of first micro-light-emitting diodes on a first temporary substrate; and replacing at least one defective micro-light-emitting diode of the first micro-light-emitting diodes with at least one second micro-light-emitting diode. The first micro-light-emitting diodes and at least one second micro-light-emitting diode are distributed on the first temporary substrate. The first micro-light-emitting diodes and at least one second micro-light-emitting diode have same properties, and at least one of the appearance difference, the height difference and the orientation difference exists between the first micro-light-emitting diodes and at least one second micro-light-emitting diode. A semiconductor structure and a display panel are also provided.
    Type: Application
    Filed: December 4, 2023
    Publication date: March 21, 2024
    Applicant: PlayNitride Display Co., Ltd.
    Inventors: Bo-Wei Wu, Yu-Yun Lo, Chien-Chen Kuo, Chang-Feng Tsai, Tzu-Yang Lin
  • Publication number: 20240088209
    Abstract: A capacitor structure and a manufacturing method thereof are disclosed in this invention. The capacitor structure includes a first electrode, a second electrode, and a capacitor dielectric stacked layer. The capacitor dielectric stacked layer is disposed between the first electrode and the second electrode, and the capacitor dielectric stacked layer includes a first dielectric layer. The first dielectric layer includes a first zirconium oxide layer and a first zirconium silicon oxide layer. A manufacturing method of a capacitor structure includes the following steps. A capacitor dielectric stacked layer is formed on a first electrode, and the capacitor dielectric stacked layer includes a first dielectric layer. The first dielectric layer includes a first zirconium oxide layer and a first zirconium silicon oxide layer. Subsequently, a second electrode is formed on the capacitor dielectric stacked layer, and the capacitor dielectric stacked layer is located between the first electrode and the second electrode.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 14, 2024
    Applicant: Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Chia-Wei Wu, Yu-Cheng Tung
  • Publication number: 20240084455
    Abstract: Some implementations described herein include systems and techniques for fabricating a wafer-on-wafer product using a filled lateral gap between beveled regions of wafers included in a stacked-wafer assembly and along a perimeter region of the stacked-wafer assembly. The systems and techniques include a deposition tool having an electrode with a protrusion that enhances an electromagnetic field along the perimeter region of the stacked-wafer assembly during a deposition operation performed by the deposition tool. Relative to an electromagnetic field generated by a deposition tool not including the electrode with the protrusion, the enhanced electromagnetic field improves the deposition operation so that a supporting fill material may be sufficiently deposited.
    Type: Application
    Filed: February 8, 2023
    Publication date: March 14, 2024
    Inventors: Che Wei YANG, Chih Cheng SHIH, Kuo Liang LU, Yu JIANG, Sheng-Chan LI, Kuo-Ming WU, Sheng-Chau CHEN, Chung-Yi YU, Cheng-Yuan TSAI
  • Patent number: 11916172
    Abstract: An epitaxial structure adapted to a semiconductor pickup element is provided. The semiconductor pickup element has at least one guiding structure and provided with a pickup portion. The epitaxial structure includes a semiconductor layer corresponding to the pickup portion and capable of being picked up by the semiconductor pickup element. The epitaxial structure also includes at least one alignment structure disposed on the semiconductor layer and corresponding to the at least one guiding structure, so that the epitaxial structure and the semiconductor pickup element are positioned relative to each other. The number of the at least one alignment structure matches the number of the at least one guiding structure.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: February 27, 2024
    Assignee: PLAYNITRIDE DISPLAY CO., LTD.
    Inventors: Shiang-Ning Yang, Yi-Min Su, Yu-Yun Lo, Bo-Wei Wu, Tzu-Yu Ting
  • Publication number: 20230377921
    Abstract: A system for storing wafer is provided. The system includes a wafer box, an installing member, a detection tube, a control unit, and a detection unit. The wafer box includes an outlet connector and an inlet connector extending a wall of the wafer box. The installing member covers the wafer box to form a sealed receiving room. Two ends of the detection tube are coupled to the outlet connector and the inlet connector. The control unit are configured to output a first control signal to the detection unit. The detection unit includes a first sensor arranged in the detection tube. The first sensor is configured to detect a property of gas to obtain data of an environment where the wafer is stored upon the first control signal. A related system for monitoring pollution of wafer is also provided.
    Type: Application
    Filed: May 19, 2023
    Publication date: November 23, 2023
    Inventors: CHUN-CHUNG CHEN, YU-WEI WU, CHUN-KAI HUANG, TANG-YU CHANG
  • Publication number: 20130030045
    Abstract: The invention discloses a method of preventing and treating osteoporosis. The method comprises a step of enhancing osteoblast differentiation and inhibiting osteoclast differentiation by administering a pharmaceutically effective amount of a composition comprising 6-hydroxy flavone compound or 7-methoxy flavone compound, or at least one pharmaceutically acceptable salt thereof to a subject.
    Type: Application
    Filed: August 6, 2012
    Publication date: January 31, 2013
    Inventors: Yu-Hui TSAI, Yu-Wei Wu, Yu-Hsiang Lin, Wen-Fu Lai, Shih-Ching Chen