Patents by Inventor Yuxin Zhou

Yuxin Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10531809
    Abstract: Apparatus and method are provided to collect and analyze heartbeat waveforms. In one novel aspect, the heartbeat waveforms are collected from wearable devices. In one embodiment, the wearable device collects heartbeat waveforms by attaching the device to the patient for a long period and sends the collected waveforms to a receiver through a wireless network. In another novel aspect, an application program is installed in a smart device to receive heartbeat waveforms from one or more wearable devices. The application program either relays the received waveform to a remote processing center or processes the data before sending. In another novel aspect, an analysis method compares received patient's current heartbeat waveform with historic data. In one embodiment, the historic data are stored in a cloud-based database. In another novel aspect, the remote processing center is an open platform data center, which takes in certified third party inputs.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: January 14, 2020
    Assignee: Bayland Scientific LLC
    Inventors: Xiaosong Du, Yuxin Zhou
  • Publication number: 20190387996
    Abstract: Apparatus and method are provided to collect and analyze phonocardiogram (PCG) an electrocardiogram (ECG) waveforms. In one novel aspect, the PCG and ECG waveforms are collected from wearable devices. In one embodiment, the wearable device collects heartbeat waveforms by attaching the device to the patient for a long period and sends the collected waveforms to a receiver through a wireless network. In one embodiment, an acoustic seal layer is attached to the wearable device to reduce the body movement noises and environmental noises. In another novel aspect, an analysis method compares received patient's current PCG/ECG waveform with historic data. In one embodiment, the historic data are stored in a cloud-based database.
    Type: Application
    Filed: January 23, 2019
    Publication date: December 26, 2019
    Inventors: Xiaosong Du, Yuxin Zhou
  • Publication number: 20190234463
    Abstract: A rolling bearing arrangement having a first and a second raceway element, and rolling bodies being arranged between the two raceway elements so that the two raceway elements are rotatable against each other in the manner of a rolling bearing, a space between the raceway elements in which the rolling bodies are rolling off comprising a lubricating grease, at least one sensor element for sensing temperature, at a specific point of the rolling bearing, particularly in the space, and for sensing speed of the rolling bearing and a unit receiving the sensed temperature and speed, calculating from the profiles of the sensed temperature over time and from the speed over time via a calculated energy imposed on the grease a used and/or remaining period of the grease life-time.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 1, 2019
    Inventors: Pieter Martin Lugt, Rob Bosmann, Yuxin Zhou
  • Patent number: 10219713
    Abstract: Apparatus and method are provided to collect and analyze phonocardiogram (PCG) an electrocardiogram (ECG) waveforms. In one novel aspect, the PCG and ECG waveforms are collected from wearable devices. In one embodiment, the wearable device collects heartbeat waveforms by attaching the device to the patient for a long period and sends the collected waveforms to a receiver through a wireless network. In one embodiment, an acoustic seal layer is attached to the wearable device to reduce the body movement noises and environmental noises. In another novel aspect, an analysis method compares received patient's current PCG/ECG waveform with historic data. In one embodiment, the historic data are stored in a cloud-based database.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: March 5, 2019
    Assignee: BAYLAND SCIENTIFIC LLC
    Inventors: Xiaosong Du, Yuxin Zhou
  • Publication number: 20180372956
    Abstract: An optical coupling system includes a first waveguide that includes a first waveguide end, a second waveguide end. The optical coupling system includes a first lens that is aligned with a first optical fiber. The optical coupling system includes a first lens holder that retains the first lens. The lens holder includes a waveguide retention portion on which the first waveguide end is positioned such that the first waveguide end is aligned with the first lens. The optical coupling system includes a second lens that is aligned with a first optical component. The optical coupling system includes a second lens holder that retains the second lens. The second lens holder includes a waveguide retention portion on which the second waveguide end is positioned such that the second waveguide end is aligned with the second lens.
    Type: Application
    Filed: June 21, 2018
    Publication date: December 27, 2018
    Inventors: Jiashu Chen, Yuxin Zhou
  • Publication number: 20180168473
    Abstract: Apparatus and method are provided to collect and analyze phonocardiogram (PCG) an electrocardiogram (ECG) waveforms. In one novel aspect, the PCG and ECG waveforms are collected from wearable devices. In one embodiment, the wearable device collects heartbeat waveforms by attaching the device to the patient for a long period and sends the collected waveforms to a receiver through a wireless network. In one embodiment, an acoustic seal layer is attached to the wearable device to reduce the body movement noises and environmental noises. In another novel aspect, an analysis method compares received patient's current PCG/ECG waveform with historic data. In one embodiment, the historic data are stored in a cloud-based database.
    Type: Application
    Filed: May 16, 2016
    Publication date: June 21, 2018
    Inventors: Xiaosong Du, Yuxin Zhou
  • Patent number: 9900982
    Abstract: A method of soldering can include: providing a first electronic component having a first buttoned soldering pad including a first soldering pad and one or more first button heads protruding from a first surface of the soldering pad; providing a second electronic component having a soldering pad; and soldering the first buttoned soldering pad to the soldering pad. The method includes introducing solder to spaces around the one or more first buttons of the first buttoned soldering pad. The method includes introducing a first solder to spaces around the one or more first buttons of the first buttoned soldering pad; introducing a second solder to spaces around one or more second buttons of a second buttoned soldering pad of the first electronic component; and forming spaces between the first and second solder that electronically insulate the first solder from the second solder.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: February 20, 2018
    Assignee: Finisar Corporation
    Inventors: Henry Nguyen, Yuxin Zhou, Tay Gek-Teng
  • Publication number: 20150138742
    Abstract: A method of soldering can include: providing a first electronic component having a first buttoned soldering pad including a first soldering pad and one or more first button heads protruding from a first surface of the soldering pad; providing a second electronic component having a soldering pad; and soldering the first buttoned soldering pad to the soldering pad. The method includes introducing solder to spaces around the one or more first buttons of the first buttoned soldering pad. The method includes introducing a first solder to spaces around the one or more first buttons of the first buttoned soldering pad; introducing a second solder to spaces around one or more second buttons of a second buttoned soldering pad of the first electronic component; and forming spaces between the first and second solder that electronically insulate the first solder from the second solder.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Inventors: Henry Nguyen, Yuxin Zhou, Tay Gek-Teng
  • Patent number: 8953160
    Abstract: Various systems and methods of monitoring laser safety by sensing contact of the system with a sample are provided. The system includes a focusing element for focusing an incident light from a laser light source onto a sample, an optical element having a collection zone for collecting a signal from the sample, a reflected light sensor for sensing a reflected light from the sample, wherein the reflected light sensor is located outside the collection zone of the optical element and on an inner surface of a housing of the system, an electrical circuit operably connected to the reflected light sensor and the laser light source and configured to control power to the laser light source in accordance with the reflected light sensed by the reflected light sensor and a spectral analyzer for processing the signal. Methods and other systems are also described and illustrated.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: February 10, 2015
    Assignee: Redox Biomedical, Inc.
    Inventors: Donald A. Ice, Rudolf J. Hofmeister, Yuxin Zhou, Harold G. Sampson, Qingfeng Huang, James Stewart, Janyce Lipson
  • Publication number: 20140350424
    Abstract: Apparatus and method are provided to collect and analyze heartbeat waveforms. In one novel aspect, the heartbeat waveforms are collected from wearable devices. In one embodiment, the wearable device collects heartbeat waveforms by attaching the device to the patient for a long period and sends the collected waveforms to a receiver through a wireless network. In another novel aspect, an application program is installed in a smart device to receive heartbeat waveforms from one or more wearable devices. The application program either relays the received waveform to a remote processing center or processes the data before sending. In another novel aspect, an analysis method compares received patient's current heartbeat waveform with historic data. In one embodiment, the historic data are stored in a cloud-based database. In another novel aspect, the remote processing center is an open platform data center, which takes in certified third party inputs.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 27, 2014
    Applicant: Bayland Scientific LLC
    Inventors: Xiaosong Du, Yuxin Zhou
  • Patent number: 8543010
    Abstract: An apparatus and method for controlling bias in an optical modulator is disclosed. The method is particularly applicable to controlling multi-wavelength modulators and wavelength-tunable transmitters. At a calibration stage, a desired optical performance of the modulator is achieved, and an amplitude of a peak-to-peak variation of the output optical signal at a pre-determined amount of dither is stored in a memory as a reference. At operating stage, a controller of the optical modulator adjusts a bias voltage of the modulator until the measured peak-to-peak optical signal variation matches the reference value stored at the calibration stage. For multi-wavelength modulators and tunable transmitters, the calibration is repeated at each wavelength, and corresponding peak-to-peak optical signal variations are stored in the memory.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: September 24, 2013
    Assignee: JDS Uniphase Corporation
    Inventors: Yuxin Zhou, Hock Gin Lim
  • Publication number: 20110206384
    Abstract: An apparatus and method for controlling bias in an optical modulator is disclosed. The method is particularly applicable to controlling multi-wavelength modulators and wavelength-tunable transmitters. At a calibration stage, a desired optical performance of the modulator is achieved, and an amplitude of a peak-to-peak variation of the output optical signal at a pre-determined amount of dither is stored in a memory as a reference. At operating stage, a controller of the optical modulator adjusts a bias voltage of the modulator until the measured peak-to-peak optical signal variation matches the reference value stored at the calibration stage. For multi-wavelength modulators and tunable transmitters, the calibration is repeated at each wavelength, and corresponding peak-to-peak optical signal variations are stored in the memory.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 25, 2011
    Applicants: JDS Uniphase Corporation
    Inventors: Yuxin ZHOU, Hock Gin Lim
  • Patent number: 7809275
    Abstract: This disclosure concerns transceivers that include CDR bypass functionality. In one example, a 10 G XFP transceiver module includes integrated CDR functionality for reducing jitter. The 10 G XFP transceiver module also implements CDR bypass functionality so that the CDR can be bypassed at rate less than about 10 Gb/s, such as the Fibre Channel 8.5 Gb/s rate for example.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: October 5, 2010
    Assignee: Finisar Corporation
    Inventors: Lewis B. Aronson, Thomas Gordon Beck Mason, Yuxin Zhou, Huy Anh Vu, Giorgio Giaretta, Jiashu Chen
  • Publication number: 20100131803
    Abstract: A method to facilitate memory allocation includes examining an executable program file configured to be executed by a processor to identify a group of functions present within the executable program file, and calculating memory requirements for each function of the group of functions. Further operations include identifying a plurality of root functions as functions which are not referred to by other functions, creating a function call tree for each of the plurality of root functions, such that each of the function call trees comprise functions which are directly or indirectly referred to by an associated one of the plurality of root functions, and calculating memory requirements for one or more function call paths of each of the function call trees based upon the calculated memory requirements of the functions included within the one or more function call paths.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Applicant: Express Logic
    Inventors: William E. Lamie, Yuxin Zhou
  • Patent number: 7372879
    Abstract: The wavelength of light emitted by a laser and modulated by a frequency response modulator is determined from the power of the emitted light and the current drawn by the modulator. From the temperature and current applied to the modulator and the optical power of the emitted light; the wavelength of the beam of light is determined as a function of a ratio of the current and power for each temperature of operation. As the wavelength of the emitted light shifts, for example as the laser ages or the laser temperature shifts, the inventive methods and devices then detect the wavelength shift and implement any necessary adjustments in the operating conditions of the laser diode. For example, a thermoelectric cooler can be used to heat or cool the laser diode as necessary to thereby adjust the wavelength of the emitted light.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: May 13, 2008
    Assignee: Finisar Corporation
    Inventors: Giorgio Giaretta, Yuxin Zhou
  • Publication number: 20050169585
    Abstract: This disclosure concerns transceivers that include CDR bypass functionality. In one example, a 10 G XFP transceiver module includes integrated CDR functionality for reducing jitter. The 10 G XFP transceiver module also implements CDR bypass functionality so that the CDR can be bypassed at rate less than about 10 Gb/s, such as the Fibre Channel 8.5 Gb/s rate for example.
    Type: Application
    Filed: March 7, 2005
    Publication date: August 4, 2005
    Inventors: Lewis Aronson, Thomas Gordon Mason, Yuxin Zhou, Huy Vu, Giorgio Giaretta, Jiashu Chen
  • Publication number: 20050125177
    Abstract: The wavelength of light emitted by a laser and modulated by a frequency response modulator is determined from the power of the emitted light and the current drawn by the modulator. From the temperature and current applied to the modulator and the optical power of the emitted light; the wavelength of the beam of light is determined as a function of a ratio of the current and power for each temperature of operation. As the wavelength of the emitted light shifts, for example as the laser ages or the laser temperature shifts, the inventive methods and devices then detect the wavelength shift and implement any necessary adjustments in the operating conditions of the laser diode. For example, a thermoelectric cooler can be used to heat or cool the laser diode as necessary to thereby adjust the wavelength of the emitted light.
    Type: Application
    Filed: December 6, 2004
    Publication date: June 9, 2005
    Inventors: Giorgio Giaretta, Yuxin Zhou