Patents by Inventor Yuzhan Zhao

Yuzhan Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923471
    Abstract: An avalanche diode including a gain region and a readout structure including an n-type (p-type) region having electrically isolated segments each including implanted regions; a p-type (n-type) region; and a first electrode on each of the segments. The gain region includes a p-n junction buried between the n-type region and the p-type region: an n+-type region having a higher n-type dopant density than the n-type region; a p+-type region having a higher p-type dopant density than the p-type region; and the p-n junction between the n+-type region and the p+-type region. A bias between the first electrodes and a second electrode (ohmically contacting the p-type (n-type) region) reverse biases the p-n junction. Electrons generated in response to electromagnetic radiation or charged particles generate additional electrons m the gain region through impact ionization but the segmented region comprises a low field region isolating the gain region from the first electrodes.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: March 5, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Carolyn Gee, Simone Michele Mazza, Bruce A. Schumm, Yuzhan Zhao
  • Publication number: 20220352400
    Abstract: An avalanche diode including a gain region and a readout structure including an n-type (p-type) region having electrically isolated segments each including implanted regions; a p-type (n-type) region; and a first electrode on each of the segments. The gain region includes a p-n junction buried between the n-type region and the p-type region: an n+-type region having a higher n-type dopant density than the n-type region; a p+-type region having a higher p-type dopant density than the p-type region; and the p-n junction between the n+-type region and the p+-type region. A bias between the first electrodes and a second electrode (ohmically contacting the p-type (n-type) region) reverse biases the p-n junction. Electrons generated in response to electromagnetic radiation or charged particles generate additional electrons m the gain region through impact ionization but the segmented region comprises a low field region isolating the gain region from the first electrodes.
    Type: Application
    Filed: October 30, 2020
    Publication date: November 3, 2022
    Applicant: The Regents of the University of California
    Inventors: Carolyn Gee, Simone Michele Mazza, Bruce A. Schumm, Yuzhan Zhao