Patents by Inventor Yuzhen Zhang

Yuzhen Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210305487
    Abstract: A piezoelectric sensor and a manufacturing method thereof, a method for recognizing a fingerprint, and an electronic device are disclosed. The piezoelectric sensor includes a first electrode layer and a second electrode layer which are opposite to each other and a piezoelectric layer. The piezoelectric layer is between the first electrode layer and the second electrode layer and includes a plurality of piezoelectric units arranged at intervals and an insulation layer between adjacent piezoelectric units of the plurality of piezoelectric units. The first electrode layer includes a plurality of sub-electrodes corresponding to the plurality of piezoelectric units, or the second electrode layer includes a plurality of sub-electrodes corresponding to the plurality of piezoelectric units; or both the first electrode layer and the second electrode layer include a plurality of sub-electrodes corresponding to the plurality of piezoelectric units.
    Type: Application
    Filed: May 29, 2020
    Publication date: September 30, 2021
    Applicant: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Xiufeng LI, Yingming LIU, Yuzhen GUO, Chenyang ZHANG
  • Patent number: 11134334
    Abstract: A sounding device, a manufacturing method thereof and a display device are provided. The sounding device includes at least two sounding units. Each of the sounding units includes: a transparent structural layer, including a recess and a supporting member located around the recess; and a piezoelectric vibrating film covering the recess, a cavity is formed by the piezoelectric vibrating film and the supporting member. The piezoelectric vibrating film includes a base film covering the recess; and at least one piezoelectric structure located on a side of the cavity away from the transparent structural layer. Each of the at least one piezoelectric structure includes: a first electrode; a piezoelectric material layer located on a side of the first electrode away from the cavity; and a second electrode located on a side of the piezoelectric material layer away from the first electrode.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: September 28, 2021
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Yanling Han, Xue Dong, Haisheng Wang, Yingming Liu, Lijun Zhao, Chenyang Zhang, Peixiao Li, Yuzhen Guo, Xiufeng Li
  • Publication number: 20210288359
    Abstract: A method for recycling a lithium iron phosphate positive plate with low energy consumption and low Al content, including: crushing a lithium iron phosphate positive plate to be recycled into a granular material with a particle size of 1-15 mm by using a crusher; heating the granular material obtained in step (1) to 350-500° C. in an atmosphere furnace in an inert atmosphere; and keeping the granular material at 350-500° C. for 0.5-2 h followed by cooling to a preset temperature to obtain a calcined product; grinding the calcined product obtained in step (2) by using a grinder to obtain a ground product with D50 larger than or equal to 50 ?m; and classifying the ground product obtained in step (3) by using an air classifier to remove Al simple substance to obtain a recovered positive material with an Al content below 200 ppm.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 16, 2021
    Inventors: Yuancheng CAO, Weixin ZHANG, Shun TANG, Yuzhen ZHAO, Shouding LI
  • Patent number: 11106029
    Abstract: An annular-irradiation high-resolution quantitative phase microimaging based on light intensity transfer equation is proposed here includes designing an annular aperture for the imaging system illumination; invoking the weak object approximation by using the parameters of annular illumination aperture and bright field microscopy to calculate a weak object optical transfer function (WOTF) on the basis of a partially coherent imaging theory; and collecting three intensity images by a camera and obtaining the quantitative phase image of object by resolving the light intensity transfer equation with a deconvolution algorithm.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: August 31, 2021
    Assignee: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Qian Chen, Chao Zuo, Jiasong Sun, Shijie Feng, Yuzhen Zhang, Guohua Gu
  • Publication number: 20210260620
    Abstract: The present disclosure provides an ultrasonic sensor, a method for driving the same, and a method for manufacturing the same. The ultrasonic sensor includes a back plate, a sounding structure on the back plate and a backing layer on a side of the sounding structure distal to the back plate; the sounding structure includes a plurality of emitting electrodes, an opposite electrode, a piezoelectric layer and a plurality of signal leads, and the plurality of emitting electrodes and the opposite electrode are respectively arranged on two sides of the piezoelectric layer; and the plurality of emitting electrodes are arranged in an array, and each of the emitting electrodes is individually coupled to one of the signal leads. The ultrasonic sensor may achieve an independent control for each patterned electrode such that the ultrasonic sensor may be used as a point sound source.
    Type: Application
    Filed: February 25, 2021
    Publication date: August 26, 2021
    Inventors: Yuzhen GUO, Yingming LIU, Haisheng WANG, Xiufeng LI, Lijun ZHAO, Peixiao LI, Yaqian JI, Chenyang ZHANG
  • Patent number: 11029144
    Abstract: A super-rapid three-dimensional measurement method and system based on an improved Fourier transform contour technique is disclosed.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: June 8, 2021
    Assignee: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Qian Chen, Chao Zuo, Shijie Feng, Jiasong Sun, Yuzhen Zhang, Guohua Gu
  • Publication number: 20210112187
    Abstract: A high-illumination numerical aperture-based large field-of-view high-resolution microimaging device, and a method for iterative reconstruction, the device comprising an LED array (1), a stage (2), a condenser (3), a microscopic objective (5), a tube lens (6), and a camera (7), the LED array (1) being arranged on the forward focal plane of the condenser (3). Light emitted by the i-th lit LED unit (8) of the LED array (1) passes through the condenser (3) and converges to become parallel light illuminating a specimen (4) to be examined, which is placed on the stage (2); part of the diffracted light passing through the specimen (4) is collected by the microscopic objective (5), converged by the tube lens (6), and reaches the imaging plane of the camera (7), forming an intensity image recorded by the camera (1). The present device and method ensure controllable programming of the illumination direction, while also ensuring an illumination-numerical-aperture up to 1.
    Type: Application
    Filed: February 26, 2018
    Publication date: April 15, 2021
    Applicant: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Qian CHEN, Chao ZUO, Jiasong SUN, Shijie FENG, Yuzhen ZHANG, Guohua GU
  • Publication number: 20210102801
    Abstract: A super-rapid three-dimensional measurement method and system based on an improved Fourier transform contour technique is disclosed.
    Type: Application
    Filed: February 26, 2018
    Publication date: April 8, 2021
    Applicant: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Qian CHEN, Chao ZUO, Shijie FENG, Jiasong SUN, Yuzhen ZHANG, Guohua GU
  • Publication number: 20210103135
    Abstract: Annular-irradiation high-resolution quantitative phase microimaging based on light intensity transfer equation is proposed here. First, an annular aperture is designed for the imaging system illumination. And then, by invoking the weak object approximation, the parameters of annular illumination aperture and bright field microscopy are used to calculate a weak object optical transfer function (WOTF) on the basis of a partially coherent imaging theory. Finally, three intensity images are collected by a camera and the quantitative phase image of object is obtained by resolving the light intensity transfer equation with a deconvolution algorithm. The present method effectively resolves the tradeoff between the cloudy low-frequency noise and high-frequency fuzziness in the light intensity transfer equation, and the spatial imaging resolution of phase reconstruction is greatly increased.
    Type: Application
    Filed: February 26, 2018
    Publication date: April 8, 2021
    Applicant: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Qian CHEN, Chao ZUO, Jiasong SUN, Shijie FENG, Yuzhen ZHANG, Guohua GU
  • Patent number: 10911672
    Abstract: A highly efficient three-dimensional image acquisition method based on multi-mode composite encoding and epipolar constraint, respectively using a fast imaging mode or a high-precision imaging mode, wherein in the fast imaging mode, two phase maps having different frequencies are obtained by four stripe gratings, and a high-frequency absolute phase is obtained by means of the epipolar constraint and a left-right consistency check, and the three-dimensional image is obtained by means of a mapping relationship between the phase and three-dimensional coordinates; and in the high precision imaging mode, two phases having different frequencies are obtained by means of N+2 stripe gratings, a low-frequency absolute phase is obtained by the epipolar constraint, and the unwrapping of a high-frequency phase is assisted by means of the low-frequency absolute phase, so as to obtain the high-frequency absolute phase, and finally, the three-dimensional image is obtained by the mapping relationship between the phase and the
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: February 2, 2021
    Assignee: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Qian Chen, Chao Zuo, Shijie Feng, Jiasong Sun, Yuzhen Zhang, Guohua Gu
  • Publication number: 20200308052
    Abstract: A preparation method of a plant-mixed warm regenerated asphalt mixture, comprises the following steps: preparing a RAP material, a new aggregate, a mineral powder, a new asphalt and a regenerant with a total mass percentage of 100%; heating and stirring the RAP material, adding the regenerant, and continuing to heat and stir; placing the product in a development bin for development, wherein a development temperature is 40° C. to 150° C., and a development time is 0.5 h to 6 h; mixing, heating and stirring a product with the new aggregate; and after mixing and heating the product with the new asphalt, adding the mineral powder, and stirring to mold. Addition of the regenerated asphalt mixture in the development process improves the regeneration effect of the old asphalt, and pavement performances of the formed regenerated asphalt mixture can fully reach that of a hot-mixed asphalt mixture produced entirely with new materials.
    Type: Application
    Filed: July 18, 2017
    Publication date: October 1, 2020
    Applicant: JIANGSU TIANNUO ROAD MATERIALS TECHNOLOGY CO.,LTD
    Inventors: Zhaomin GUO, Yuzhen ZHANG, Hubing XIAO, Meng XU
  • Publication number: 20200209604
    Abstract: The invention discloses a programmable annular LED illumination-based high efficiency quantitative phase microscopy imaging method, the proposed method comprising the following steps: the derivation of system optical transfer function in a partially coherent illumination imaging system; the derivation of phase transfer function with the weak object approximation under the illumination of tilted axially symmetric coherent point illumination source; the extension of illumination from an axially symmetric coherence point source to a discrete annular point source, and the optical transfer function can be treated as an incoherent superposition of each pair of tilted axially symmetric coherent point sources. The acquisition of raw intensity dataset; the implementation of deconvolution for quantitative phase reconstruction.
    Type: Application
    Filed: February 26, 2018
    Publication date: July 2, 2020
    Applicant: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Qian CHEN, Chao Zuo, Jiasong SUN, Shijie FENG, Yuzhen ZHANG, Guohua GU
  • Publication number: 20200128180
    Abstract: A highly efficient three-dimensional image acquisition method based on multi-mode composite encoding and epipolar constraint, respectively using a fast imaging mode or a high-precision imaging mode, wherein in the fast imaging mode, two phase maps having different frequencies are obtained by four stripe gratings, and a high-frequency absolute phase is obtained by means of the epipolar constraint and a left-right consistency check, and the three-dimensional image is obtained by means of a mapping relationship between the phase and three-dimensional coordinates; and in the high precision imaging mode, two phases having different frequencies are obtained by means of N+2 stripe gratings, a low-frequency absolute phase is obtained by the epipolar constraint, and the unwrapping of a high-frequency phase is assisted by means of the low-frequency absolute phase, so as to obtain the high-frequency absolute phase, and finally, the three-dimensional image is obtained by the mapping relationship between the phase and the
    Type: Application
    Filed: February 26, 2018
    Publication date: April 23, 2020
    Applicant: Nanjing University of Science and Technology
    Inventors: Qian Chen, Chao Zuo, Shijie Feng, Jiasong Sun, Yuzhen Zhang, Guohua Gu
  • Publication number: 20190319354
    Abstract: An antenna includes a director-reflector unit, which includes two radiation elements, and a switch, and a main element configured to transmit and receive a signal. Total electrical length of the two radiation elements is greater than one half of a wavelength corresponding to an operating frequency band of the antenna, and electrical length of either of the two radiation elements is less than one half of the wavelength corresponding to the operating frequency band of the antenna. The two radiation elements are coupled using the switch and the director-reflector unit is used as a reflector and configured to reflect the signal transmitted and received by the main element when the switch is switched on, and the two radiation elements are decoupled and the director-reflector unit is used as a director and configured to direct the signal transmitted and received by the main element when the switch is switched off.
    Type: Application
    Filed: June 17, 2016
    Publication date: October 17, 2019
    Inventors: Yuzhen Zhang, Kemeng Wang, Yiwen Gong, Chaoxu Li, Fang Xia
  • Patent number: 10141652
    Abstract: An antenna apparatus includes: an antenna radiator, at least one antenna cable trough, a feedpoint, and at least one first protruding metal strip; where the at least one antenna cable trough is disposed on the antenna radiator; the at least one antenna cable trough extends along a top edge to a bottom edge of the antenna radiator; the feedpoint is further disposed on the antenna radiator, and the feedpoint is disposed at an end of the bottom edge of the antenna radiator and is near a side edge of the antenna radiator; and the at least one first protruding metal strip is inserted in the antenna cable trough and is separated from the antenna radiator.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: November 27, 2018
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Qing Liu, Yuzhen Zhang, Yao Lan, Dingjie Wang
  • Publication number: 20170288310
    Abstract: An antenna apparatus includes: an antenna radiator, at least one antenna cable trough, a feedpoint, and at least one first protruding metal strip; where the at least one antenna cable trough is disposed on the antenna radiator; the at least one antenna cable trough extends along a top edge to a bottom edge of the antenna radiator; the feedpoint is further disposed on the antenna radiator, and the feedpoint is disposed at an end of the bottom edge of the antenna radiator and is near a side edge of the antenna radiator; and the at least one first protruding metal strip is inserted in the antenna cable trough and is separated from the antenna radiator.
    Type: Application
    Filed: August 28, 2014
    Publication date: October 5, 2017
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Qing Liu, Yuzhen Zhang, Yao Lan, Dingjie Wang
  • Publication number: 20070125686
    Abstract: This invention relates to a method for processing oil sand bitumen including solvent deasphalting and visbreaking oil sand bitumen to yield de-oiled asphalt (DOA) and components capable of being transmitted in pipeline. The method for processing oil sand bitumen provided by this invention can effectively transmit oil sand bitumen in pipeline with the advantages of simple operation low equipment cost and significantly reduced operating cost. This method not only can solve the problems arising from enormous working capital required for purchasing diluting agent needed by the traditional unit for processing oil sand bitumen and complications in looking for users, but also can drastically reduce the high investment and high processing cost of such main upgrading avenues as coking and converting heavy oils to light distillates. This invention can enhance the effective products yield and increase the sales income.
    Type: Application
    Filed: September 19, 2006
    Publication date: June 7, 2007
    Inventors: Changbo Zheng, Yuzhen Zhang, Zhongwen He, Qiang Liu, Huize Huang