Patents by Inventor Yves BIDAUX

Yves BIDAUX has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125624
    Abstract: A method of determining a linear or angular position of a magnetic sensor device relative to a magnetic source, or vice versa, the sensor device includes at least four magnetic sensor elements. The method involves the steps of: a) determining a first magnetic field gradient; b) determining a second magnetic field gradient; c) determining a ratio of the first and second magnetic field gradient; d) converting the ratio into a position; while matching signal paths of the magnetic sensor elements so as to improve signal-to-noise.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 18, 2024
    Inventors: Nicolas DUPRE, Yves BIDAUX
  • Patent number: 11921173
    Abstract: A method of determining an orientation ?,? of a magnet which is pivotable about a reference position having a predefined position relative to a semiconductor substrate, comprising: a) determining at least two of the following magnetic field gradients: i) a first magnetic field gradient dBx/dx; ii) a second magnetic field gradient dBy/dy; iii) a third magnetic field gradient dBz/dx; iv) a fourth magnetic field gradient dBz/dy; b) determining a first angle ? based on at least one of the magnetic field gradients; c) determining a second angle ? based on at least one of the magnetic field gradients. A sensor device is configured for performing this method. A sensor system includes such sensor device and a magnet, optionally connected to a joystick.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: March 5, 2024
    Inventors: Gael Close, Nicolas Dupre, Jean-Claude Depoorter, Yves Bidaux
  • Patent number: 11892325
    Abstract: A method of determining a linear or angular position of a magnetic sensor device relative to a magnetic source, or vice versa, the sensor device includes at least four magnetic sensor elements. The method involves the steps of: a) determining a first magnetic field gradient; b) determining a second magnetic field gradient; c) determining a ratio of the first and second magnetic field gradient; d) converting the ratio into a position; while matching signal paths of the magnetic sensor elements so as to improve signal-to-noise.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: February 6, 2024
    Assignee: MELEXIS TECHNOLOGIES
    Inventors: Nicolas Dupre, Yves Bidaux
  • Publication number: 20240003997
    Abstract: An integrated sensor device includes: a semiconductor substrate comprising a horizontal Hall element, and an integrated magnetic flux concentrator located substantially above said horizontal Hall element, wherein the first magnetic flux concentrator has a shape with a geometric center which is aligned with a geometric centre of the horizontal Hall element; and wherein the shape has a height H and a transversal dimension D, wherein H?30 ?m and/or wherein (H/D)?25%. The integrated magnetic flux concentrator may be partially incorporated in the “interconnection stack”. A method is provided for producing such an integrated sensor device.
    Type: Application
    Filed: September 15, 2023
    Publication date: January 4, 2024
    Inventors: Yves BIDAUX, Lionel TOMBEZ
  • Publication number: 20230422632
    Abstract: A method of producing a semiconductor substrate comprising at least one integrated magnetic flux concentrator, comprising the steps of: a) providing a semiconductor substrate having an upper surface; b) making at least one cavity in said upper surface; c) depositing one or more layers of one or more materials, including sputtering at least one layer of a soft magnetic material; d) removing substantially all of the soft magnetic material that is situated outside of the at least one cavity, while leaving at least a portion of the soft magnetic material that is inside said at least one cavity. A semiconductor substrate comprising at least one integrated magnetic flux concentrator. A sensor device or a sensor system, a current sensor device or system, a position sensor device or system, a proximity sensor device or system, an integrated transformer device or system.
    Type: Application
    Filed: September 6, 2023
    Publication date: December 28, 2023
    Inventors: Appo VAN DER WIEL, Yves BIDAUX, Lionel TOMBEZ
  • Patent number: 11852507
    Abstract: A position sensor device includes: a first, second and third magnetic sensor for measuring a first magnetic field component oriented in the first direction, and a second magnetic field component oriented in a second direction perpendicular to the first direction; a processing circuit for determining a first and a second difference of signals provided by the first and third sensor, and for determining and outputting a first angle based on these differences; and for determining a third and a fourth difference of signals provided by the second sensor and one of the first and the third sensor; and for determining a second angle based on the third and the fourth difference, and for outputting the second angle and/or a diagnostic signal based on a comparison of the first and second angle.
    Type: Grant
    Filed: December 28, 2022
    Date of Patent: December 26, 2023
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Lionel Tombez, Yves Bidaux, Gael Close
  • Patent number: 11846687
    Abstract: A method of determining a gradient of a magnetic field, includes the steps of: biasing a first/second magnetic sensor with a first/second biasing signal; measuring and amplifying a first/second magnetic sensor signal; measuring a temperature and/or a stress difference; adjusting at least one of: the second biasing signal, the second amplifier gain, the amplified and digitized second sensor value using a predefined function f(T) or f(T, ??) or f(??) of the measured temperature and/or the measured differential stress before determining a difference between the first/second signal/value derived from the first/second sensor signal. A magnetic sensor device is configured for performing this method, as well as a current sensor device, and a position sensor device.
    Type: Grant
    Filed: December 28, 2022
    Date of Patent: December 19, 2023
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Nicolas Dupre, Yves Bidaux
  • Patent number: 11796609
    Abstract: An integrated sensor device includes: a semiconductor substrate comprising a horizontal Hall element, and an integrated magnetic flux concentrator located substantially above said horizontal Hall element, wherein the first magnetic flux concentrator has a shape with a geometric center which is aligned with a geometric centre of the horizontal Hall element; and wherein the shape has a height H and a transversal dimension D, wherein H?30 ?m and/or wherein (H/D)?25%. The integrated magnetic flux concentrator may be partially incorporated in the “interconnection stack”. A method is provided for producing such an integrated sensor device.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: October 24, 2023
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Yves Bidaux, Lionel Tombez
  • Patent number: 11796305
    Abstract: A position sensor system for determining a position of a sensor device relative to a magnetic structure, the system comprising: said magnetic structure comprising a plurality of non-equidistant poles; said sensor device comprising at least three magnetic sensors spaced apart over predefined distances; and the sensor device being adapted for: a) measuring at least three in-plane magnetic field components, and for calculating two in-plane field gradients therefrom; b) measuring at least three out-of-plane magnetic field components, and for calculating two out-of-plane field gradients therefrom; c) calculating a coarse signal based on these gradients; d) calculating a fine signal based on these gradients; e) determining said position based on the coarse signal and the fine signal.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: October 24, 2023
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventor: Yves Bidaux
  • Patent number: 11788866
    Abstract: A position sensor device comprising two or more magnetic sensors capable of measuring one or two or three orthogonal magnetic field components at various sensor locations; and a processing circuit for determining a first, a second and a third difference of two respective components, and for determining a first ratio of the first and second difference, and determining and outputting a first angle based on this first ratio; and for determining a second ratio of the first and third difference, for optionally determining a second angle, optionally comparing the two angles or the two ratios; and for outputting at least one of: the second angle, the two ratios, a diagnostic signal based on a comparison of the angles or ratios.
    Type: Grant
    Filed: December 28, 2022
    Date of Patent: October 17, 2023
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Lionel Tombez, Yves Bidaux, Gael Close
  • Patent number: 11785865
    Abstract: A method of producing a semiconductor substrate comprising at least one integrated magnetic flux concentrator, comprising the steps of: a) providing a semiconductor substrate having an upper surface; b) making at least one cavity in said upper surface; c) depositing one or more layers of one or more materials, including sputtering at least one layer of a soft magnetic material; d) removing substantially all of the soft magnetic material that is situated outside of the at least one cavity, while leaving at least a portion of the soft magnetic material that is inside said at least one cavity. A semiconductor substrate comprising at least one integrated magnetic flux concentrator. A sensor device or a sensor system, a current sensor device or system, a position sensor device or system, a proximity sensor device or system, an integrated transformer device or system.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: October 10, 2023
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Appo Van Der Wiel, Yves Bidaux, Lionel Tombez
  • Publication number: 20230213358
    Abstract: A position sensor device comprising two or more magnetic sensors capable of measuring one or two or three orthogonal magnetic field components at various sensor locations; and a processing circuit for determining a first, a second and a third difference of two respective components, and for determining a first ratio of the first and second difference, and determining and outputting a first angle based on this first ratio; and for determining a second ratio of the first and third difference, for optionally determining a second angle, optionally comparing the two angles or the two ratios; and for outputting at least one of: the second angle, the two ratios, a diagnostic signal based on a comparison of the angles or ratios.
    Type: Application
    Filed: December 28, 2022
    Publication date: July 6, 2023
    Inventors: Lionel TOMBEZ, Yves BIDAUX, Gael CLOSE
  • Publication number: 20230213357
    Abstract: A position sensor device includes: a first, second and third magnetic sensor for measuring a first magnetic field component oriented in the first direction, and a second magnetic field component oriented in a second direction perpendicular to the first direction; a processing circuit for determining a first and a second difference of signals provided by the first and third sensor, and for determining and outputting a first angle based on these differences; and for determining a third and a fourth difference of signals provided by the second sensor and one of the first and the third sensor; and for determining a second angle based on the third and the fourth difference, and for outputting the second angle and/or a diagnostic signal based on a comparison of the first and second angle.
    Type: Application
    Filed: December 28, 2022
    Publication date: July 6, 2023
    Inventors: Lionel TOMBEZ, Yves BIDAUX, Gael CLOSE
  • Publication number: 20230160979
    Abstract: A method of determining a gradient of a magnetic field, includes the steps of: biasing a first/second magnetic sensor with a first/second biasing signal; measuring and amplifying a first/second magnetic sensor signal; measuring a temperature and/or a stress difference; adjusting at least one of: the second biasing signal, the second amplifier gain, the amplified and digitized second sensor value using a predefined function f(T) or f(T, ??) or f(??) of the measured temperature and/or the measured differential stress before determining a difference between the first/second signal/value derived from the first/second sensor signal. A magnetic sensor device is configured for performing this method, as well as a current sensor device, and a position sensor device.
    Type: Application
    Filed: December 28, 2022
    Publication date: May 25, 2023
    Inventors: Nicolas Dupre, Yves Bidaux
  • Patent number: 11561268
    Abstract: A method of determining a gradient of a magnetic field, includes the steps of: biasing a first/second magnetic sensor with a first/second biasing signal; measuring and amplifying a first/second magnetic sensor signal; measuring a temperature and/or a stress difference; adjusting at least one of: the second biasing signal, the second amplifier gain, the amplified and digitized second sensor value using a predefined function f(T) or f(T, ??) or f(??) of the measured temperature and/or the measured differential stress before determining a difference between the first/second signal/value derived from the first/second sensor signal. A magnetic sensor device is configured for performing this method, as well as a current sensor device, and a position sensor device.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: January 24, 2023
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Nicolas Dupre, Yves Bidaux
  • Publication number: 20220404443
    Abstract: A method of determining an orientation ?,? of a magnet which is pivotable about a reference position having a predefined position relative to a semiconductor substrate, comprising: a) determining at least two of the following magnetic field gradients: i) a first magnetic field gradient dBx/dx; ii) a second magnetic field gradient dBy/dy; iii) a third magnetic field gradient dBz/dx; iv) a fourth magnetic field gradient dBz/dy; b) determining a first angle ? based on at least one of the magnetic field gradients; c) determining a second angle ? based on at least one of the magnetic field gradients. A sensor device is configured for performing this method. A sensor system includes such sensor device and a magnet, optionally connected to a joystick.
    Type: Application
    Filed: June 13, 2022
    Publication date: December 22, 2022
    Inventors: Gael CLOSE, Nicolas DUPRE, Jean-Claude DEPOORTER, Yves BIDAUX
  • Patent number: 11469570
    Abstract: Methods for driving a tunable laser with integrated tuning elements are disclosed. The methods can include modulating the tuning current and laser injection current such that the laser emission wavelength and output power are independently controllable. In some examples, the tuning current and laser injection current are modulated simultaneously and a wider tuning range can result. In some examples, one or both of these currents is sinusoidally modulated. In some examples, a constant output power can be achieved while tuning the emission wavelength. In some examples, the output power and tuning can follow a linear relationship. In some examples, injection current and tuning element drive waveforms necessary to achieve targeted output power and tuning waveforms can be achieved through optimization based on goodness of fit values between the targeted and actual output power and tuning waveforms.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: October 11, 2022
    Assignee: Apple Inc.
    Inventors: Ross M. Audet, Mark Alan Arbore, Alfredo Bismuto, Yves Bidaux, Antoine Jean André Müller
  • Patent number: 11437779
    Abstract: Disclosed is a Vernier effect DBR laser that has uniform laser injection current pumping along the length of the laser. The laser can include one or more tuning elements, separate from the laser injection element, and these tuning elements can be used to control the temperature or modal refractive index of one or more sections of the laser. The refractive indices of each diffraction grating can be directly controlled by temperature changes, electro optic effects, or other means through the one or more tuning elements. With direct control of the temperature and/or refractive indices of the diffraction gratings, the uniformly pumped Vernier effect DBR laser can be capable of a wider tuning range. Additionally, uniform pumping of the laser through a single electrode can reduce or eliminate interfacial reflections caused by, for example, gaps between metal contacts atop the laser ridge, which can minimize multi-mode operation and mode hopping.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: September 6, 2022
    Inventors: Ross M. Audet, Mark Alan Arbore, Alfredo Bismuto, Yves Bidaux, Camille Tardy, Tobias Gresch, Antoine Jean André Müller
  • Publication number: 20220276072
    Abstract: Angular position sensor system comprising: a cylindrical magnet rotatable about a rotation axis; and an angular position sensor device comprising: a substrate comprising a plurality of magnetic sensitive elements configured for measuring a first magnetic field component in a first direction and a second magnetic field component in a second direction perpendicular to the first direction; and a processing circuit configured for calculating the angular position; the sensor device being oriented such that the first direction is oriented in a circumferential direction, and the second direction is either parallel or orthogonal to the rotation axis; the sensor device being located at a predefined position where a magnitude of a third magnetic field component orthogonal to the first and second magnetic field component is negligible over the 360° angular range.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 1, 2022
    Inventors: Nicolas DUPRE, Lionel TOMBEZ, Gael CLOSE, Yves BIDAUX, David GOYVAERTS
  • Publication number: 20220244034
    Abstract: A position sensor system for determining a position of a sensor device relative to a magnetic structure, the system comprising: said magnetic structure comprising a plurality of non-equidistant poles; said sensor device comprising at least three magnetic sensors spaced apart over predefined distances; and the sensor device being adapted for: a) measuring at least three in-plane magnetic field components, and for calculating two in-plane field gradients therefrom; b) measuring at least three out-of-plane magnetic field components, and for calculating two out-of-plane field gradients therefrom; c) calculating a coarse signal based on these gradients; d) calculating a fine signal based on these gradients; e) determining said position based on the coarse signal and the fine signal.
    Type: Application
    Filed: April 14, 2022
    Publication date: August 4, 2022
    Inventor: Yves BIDAUX