Patents by Inventor Yves Painchaud

Yves Painchaud has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230305323
    Abstract: An optical modulator includes a waveguide core; a first transition zone located between a first side of the waveguide core and a first electrical contact region; and a second transition zone located between a second side of the waveguide core and a second electrical contact region, wherein one or more of the first transition zone and second transition zone has a variable thickness. The variable thickness is confined to the one or more of the first transition zone and second transition zone. The variable thickness removes a portion of the highly doped first transition zone and the highly doped second transition zone thereby reducing contact resistance.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 28, 2023
    Inventors: Alexandre Delisle-Simard, Yves Painchaud
  • Patent number: 11681168
    Abstract: A silicon modulator where the doping profile varies along the lateral and/or longitudinal position in the transition zones to achieve improved performance in terms of either optical attenuation or contact access resistance or both. A silicon-based modulator includes a waveguide including a contact region and a core region, wherein the waveguide includes a dopant concentration that decreases from the contact region to the core region in a transition zone according to a doping profile that is variable.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: June 20, 2023
    Assignee: Ciena Corporation
    Inventors: Alexandre Delisle-Simard, Yves Painchaud
  • Patent number: 11586059
    Abstract: An optical modulator includes a rib; and a slab interconnected to both sides of the rib; wherein the rib is dimensioned relative to the slab to support guiding of a Transverse Magnetic (TM) mode with a main lobe that propagates orthogonal to the slab and with the main lobe substantially excluded from the slab. The rib guides wavelengths in an infrared range in the TM mode. A height of the rib, relative to the slab, is about half of a width of the rib, between the slab.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: February 21, 2023
    Assignee: Ciena Corporation
    Inventors: Alexandre D. Simard, Yves Painchaud
  • Patent number: 11422394
    Abstract: A silicon modulator where the doping profile varies along the lateral and/or longitudinal position in the transition zones to achieve improved performance in terms of optical attenuation or contact access resistance or both. A modulator includes a core; a first transition zone that is a P-side region adjacent to the waveguide core, the first transition zone has a first longitudinal doping profile; and a second transition zone that is an N-side region adjacent to the core on an opposite side as the first transition region, the second transition zone has a second longitudinal doping profile; the first longitudinal doping profile has a variation of doping concentration along a longitudinal direction in the first transition region to mimic a first lateral doping profile, and the second longitudinal doping profile has a variation of doping concentration along a longitudinal direction in the second transition region to mimic a second lateral doping profile.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 23, 2022
    Assignee: Ciena Corporation
    Inventors: Alexandre Delisle-Simard, Yves Painchaud
  • Publication number: 20220260864
    Abstract: A silicon modulator where the doping profile varies along the lateral and/or longitudinal position in the transition zones to achieve improved performance in terms of either optical attenuation or contact access resistance or both. A silicon-based modulator includes a waveguide including a contact region and a core region, wherein the waveguide includes a dopant concentration that decreases from the contact region to the core region in a transition zone according to a doping profile that is variable.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Alexandre Delisle-Simard, Yves Painchaud
  • Patent number: 11226504
    Abstract: The present disclosure provides a multi-pass free-carrier absorption variable optical attenuator device, including: a diode structure including a P-type doped region and an N-type doped region separated by an intrinsic region; and an optical waveguide including a plurality of optical waveguide sections aligned parallel to one another and disposed between the P-type doped region and the N-type doped region and within the intrinsic region of the diode structure. Further, the present disclosure provides a multi-pass thermal phase shifter device, including: a silicon structure including or coupled to one or more heater elements; and an optical waveguide including a plurality of optical waveguide sections aligned parallel to one another and disposed adjacent to the one or more heater elements. Optionally, at least two of the optical waveguide sections have different geometries and are separated by a predetermined gap.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: January 18, 2022
    Assignee: Ciena Corporation
    Inventors: Sean Sebastian O'Keefe, Alexandre Delisle-Simard, Yves Painchaud
  • Patent number: 11217713
    Abstract: Fabricating a photonic integrated circuit includes fabricating structures in one or more silicon layers. At least a first silicon layer comprises: one or more photonic structures, where the photonic structures include one or more waveguides and one or more photodetectors, and one or more light absorbing structures, where at least some of the light absorbing structures include doped silicon. Fabricating the photonic integrated circuit also includes fabricating at least one waveguide in the photonic integrated circuit for receiving light into at least one of the silicon layers.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: January 4, 2022
    Assignee: Ciena Corporation
    Inventors: François Pelletier, Sean Sebastian O'Keefe, Christine Latrasse, Yves Painchaud
  • Publication number: 20210271120
    Abstract: An optical modulator includes a rib; and a slab interconnected to both sides of the rib; wherein the rib is dimensioned relative to the slab to support guiding of a Transverse Magnetic (TM) mode with a main lobe that propagates orthogonal to the slab and with the main lobe substantially excluded from the slab. The rib guides wavelengths in an infrared range in the TM mode. A height of the rib, relative to the slab, is about half of a width of the rib, between the slab.
    Type: Application
    Filed: May 14, 2021
    Publication date: September 2, 2021
    Inventors: Alexandre D. Simard, Yves Painchaud
  • Publication number: 20210167230
    Abstract: Fabricating a photonic integrated circuit includes fabricating structures in one or more silicon layers. At least a first silicon layer comprises: one or more photonic structures, where the photonic structures include one or more waveguides and one or more photodetectors, and one or more light absorbing structures, where at least some of the light absorbing structures include doped silicon. Fabricating the photonic integrated circuit also includes fabricating at least one waveguide in the photonic integrated circuit for receiving light into at least one of the silicon layers.
    Type: Application
    Filed: January 14, 2020
    Publication date: June 3, 2021
    Inventors: François Pelletier, Sean Sebastian O'Keefe, Christine Latrasse, Yves Painchaud
  • Patent number: 11022825
    Abstract: A silicon photonics modulator includes a rib that is a PN junction; a slab including a P doped region adjacent to the waveguide core on a first side and an N doped region adjacent to the waveguide core on a second side, opposite the first side; and a first electrode connected to the P-doped region and a second electrode connected to the N-doped region, wherein the rib is dimensioned to support guiding of a Transverse Magnetic (TM) mode with a main lobe that propagates orthogonal to the slab. The rib guides wavelengths in an infrared range in the TM mode.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: June 1, 2021
    Assignee: Ciena Corporation
    Inventors: Alexandre D. Simard, Yves Painchaud
  • Patent number: 10983369
    Abstract: A silicon modulator where the doping profile varies along the lateral and/or longitudinal position in the transition zones to achieve improved performance in terms of either optical attenuation or contact access resistance or both. A silicon-based modulator includes a waveguide core that is a PN junction region; a first transition zone that is a P-side region adjacent to the waveguide core and a first electrode; and a second transition zone that is an N-side region adjacent to the waveguide core on an opposite side as the first transition region and a second electrode; wherein a thickness of each of the first transition zone and the second transition zone is variable in any of a lateral direction, a longitudinal direction, and both the lateral direction and the longitudinal direction, each of the lateral direction and the longitudinal direction are relative to the waveguide core.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: April 20, 2021
    Assignee: Ciena Corporation
    Inventors: Alexandre Delisle-Simard, Yves Painchaud
  • Publication number: 20210018768
    Abstract: The present disclosure provides a multi-pass free-carrier absorption variable optical attenuator device, including: a diode structure including a P-type doped region and an N-type doped region separated by an intrinsic region; and an optical waveguide including a plurality of optical waveguide sections aligned parallel to one another and disposed between the P-type doped region and the N-type doped region and within the intrinsic region of the diode structure. Further, the present disclosure provides a multi-pass thermal phase shifter device, including: a silicon structure including or coupled to one or more heater elements; and an optical waveguide including a plurality of optical waveguide sections aligned parallel to one another and disposed adjacent to the one or more heater elements. Optionally, at least two of the optical waveguide sections have different geometries and are separated by a predetermined gap.
    Type: Application
    Filed: July 19, 2019
    Publication date: January 21, 2021
    Inventors: Sean Sebastian O'Keefe, Alexandre Delisle-Simard, Yves Painchaud
  • Patent number: 10830638
    Abstract: A photodetector circuit is disclosed. The photodetector circuit includes an optical input configured to receive a source optical signal for detection by the photodetector circuit, an optical waveguide for coupling the optical input and at least one side of a plurality of sides of a photodiode, wherein the optical waveguide is configured to generate a first optical signal and a second optical signal from the source optical signal, and the photodiode coupled to the first optical waveguide, where the photodiode is illuminated on the at least one side by the first and second optical signals at different locations on the photodiode, where the photodiode generates a photocurrent based on the first and second optical signals reducing photocurrent saturation. Providing a delay between the first and second optical signals reduces an out-of-band frequency response of the photodiode circuit.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: November 10, 2020
    Assignee: Ciena Corporation
    Inventors: Francois Pelletier, Michel Poulin, Yves Painchaud, Michael Vitic, Christine Latrasse, Alexandre Delisle-Simard
  • Patent number: 10823988
    Abstract: An optical modulator includes a first arm and a second arm, each arm includes an arrangement with an equal amount of p-doped material and an equal amount of n-doped material, such that mask misalignment causes a same effect in both arms; and each arm includes a plurality of segments where electrodes connect for push-pull operation of the first arm and the second arm.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: November 3, 2020
    Assignee: Ciena Corporation
    Inventors: Christine Latrasse, Yves Painchaud, Michel Poulin
  • Publication number: 20200192131
    Abstract: A silicon modulator where the doping profile varies along the lateral and/or longitudinal position in the transition zones to achieve improved performance in terms of optical attenuation or contact access resistance or both. A modulator includes a core; a first transition zone that is a P-side region adjacent to the waveguide core, the first transition zone has a first longitudinal doping profile; and a second transition zone that is an N-side region adjacent to the core on an opposite side as the first transition region, the second transition zone has a second longitudinal doping profile; the first longitudinal doping profile has a variation of doping concentration along a longitudinal direction in the first transition region to mimic a first lateral doping profile, and the second longitudinal doping profile has a variation of doping concentration along a longitudinal direction in the second transition region to mimic a second lateral doping profile.
    Type: Application
    Filed: January 25, 2019
    Publication date: June 18, 2020
    Inventors: Alexandre Delisle-Simard, Yves Painchaud
  • Patent number: 10663663
    Abstract: A spot-size converter includes a first part of a waveguiding structure to couple to a first waveguide to receive light from or transmit light to the first waveguide in a first propagation mode, wherein the first part of the waveguiding structure has a lower waveguiding structure with a varying effective refractive index that decreases away from the first waveguide; and a second part of the waveguiding structure to couple to a second waveguide to transmit light to or receive light from the second waveguide in a second propagation mode, the second part of the waveguiding structure includes an upper waveguiding structure with a plurality of high-index elements arranged therein, an overlap region is between the first part and the second part, the first propagation mode progressively transforms into the second propagation mode in the overlap region.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: May 26, 2020
    Assignee: Ciena Corporation
    Inventors: Yves Painchaud, Marie-Josee Picard, Ian Betty, Christine Latrasse, Michel Poulin
  • Publication number: 20200124883
    Abstract: A silicon modulator where the doping profile varies along the lateral and/or longitudinal position in the transition zones to achieve improved performance in terms of either optical attenuation or contact access resistance or both. A silicon-based modulator includes a waveguide core that is a PN junction region; a first transition zone that is a P-side region adjacent to the waveguide core and a first electrode; and a second transition zone that is an N-side region adjacent to the waveguide core on an opposite side as the first transition region and a second electrode; wherein a thickness of each of the first transition zone and the second transition zone is variable in any of a lateral direction, a longitudinal direction, and both the lateral direction and the longitudinal direction, each of the lateral direction and the longitudinal direction are relative to the waveguide core.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 23, 2020
    Inventors: Alexandre Delisle-Simard, Yves Painchaud
  • Publication number: 20200073154
    Abstract: A silicon photonics modulator includes a rib that is a PN junction; a slab including a P doped region adjacent to the waveguide core on a first side and an N doped region adjacent to the waveguide core on a second side, opposite the first side; and a first electrode connected to the P-doped region and a second electrode connected to the N-doped region, wherein the rib is dimensioned to support guiding of a Transverse Magnetic (TM) mode with a main lobe that propagates orthogonal to the slab. The rib guides wavelengths in an infrared range in the TM mode.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 5, 2020
    Inventors: Alexandre D. Simard, Yves Painchaud
  • Publication number: 20200057320
    Abstract: An optical modulator includes a first arm and a second arm, each arm includes an arrangement with an equal amount of p-doped material and an equal amount of n-doped material, such that mask misalignment causes a same effect in both arms; and each arm includes a plurality of segments where electrodes connect for push-pull operation of the first arm and the second arm.
    Type: Application
    Filed: April 12, 2018
    Publication date: February 20, 2020
    Inventors: Christine Latrasse, Yves Painchaud, Michel Poulin
  • Publication number: 20190391006
    Abstract: A photodetector circuit is disclosed. The photodetector circuit includes an optical input configured to receive a source optical signal for detection by the photodetector circuit, an optical waveguide for coupling the optical input and at least one side of a plurality of sides of a photodiode, wherein the optical waveguide is configured to generate a first optical signal and a second optical signal from the source optical signal, and the photodiode coupled to the first optical waveguide, where the photodiode is illuminated on the at least one side by the first and second optical signals at different locations on the photodiode, where the photodiode generates a photocurrent based on the first and second optical signals reducing photocurrent saturation. Providing a delay between the first and second optical signals reduces an out-of-band frequency response of the photodiode circuit.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 26, 2019
    Inventors: Francois Pelletier, Michel Poulin, Yves Painchaud, Michael Vitic, Christine Latrasse, Alexandre Delisle-Simard