Patents by Inventor Zach Reitmeier

Zach Reitmeier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8844137
    Abstract: Disclosed is an ejection device for an inkjet printer that includes an ejection chip having a substrate and at least one fluid ejecting element. The ejection device further includes a fluidic structure configured over the ejection chip. The fluidic structure includes a nozzle plate composed of an organic material and includes a plurality of nozzles. The fluidic structure further includes a flow feature layer configured in between the ejection chip and the nozzle plate. The flow feature layer is composed of an organic material and includes a plurality of flow features. Furthermore, the fluidic structure includes a liner layer encapsulating the nozzle plate. The liner layer further at least partially encapsulates each flow feature of the plurality of flow features. The liner layer is composed of an inorganic material. Further disclosed is a method for fabricating the ejection device.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: September 30, 2014
    Assignee: Funai Electric Co., Ltd.
    Inventors: Xiaorong Cai, Jiandong Fang, Xiaoming Wu, Elaine Yeap Money, Eunki Hong, Yimin Guan, Burton Joyner, II, Sean Terrance Weaver, David Graham, Zach Reitmeier
  • Patent number: 8833908
    Abstract: Disclosed is a method for fabricating a planar heater structure for an ejection device. The method includes providing a substrate wafer having a plurality of plugs configured therewithin. The method also includes depositing and patterning a layer of a second metallic material over the substrate wafer, providing a layer of a dielectric material of a predetermined thickness over the patterned layer of the second metallic material, and conducting chemical mechanical polishing of the layer of the dielectric material to form a planarized top surface while exposing the patterned layer of the second metallic material. The method further includes cleaning the planarized top surface, depositing and patterning a resistor film over the planarized top surface, depositing one or more blanket films over the patterned resistor film, and patterning and etching the one or more blanket films. Further disclosed are planar heater structures and additional methods for fabricating the planar heater structures.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: September 16, 2014
    Assignee: Lexmark International, Inc.
    Inventors: Yimin Guan, Burton Joyner, II, Zach Reitmeier
  • Publication number: 20130284694
    Abstract: Disclosed is an ejection device for an inkjet printer that includes an ejection chip having a substrate and at least one fluid ejecting element. The ejection device further includes a fluidic structure configured over the ejection chip. The fluidic structure includes a nozzle plate composed of an organic material and includes a plurality of nozzles. The fluidic structure further includes a flow feature layer configured in between the ejection chip and the nozzle plate. The flow feature layer is composed of an organic material and includes a plurality of flow features. Furthermore, the fluidic structure includes a liner layer encapsulating the nozzle plate. The liner layer further at least partially encapsulates each flow feature of the plurality of flow features. The liner layer is composed of an inorganic material. Further disclosed is a method for fabricating the ejection device.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 31, 2013
    Inventors: Xiaorong CAI, Jiandong FANG, Xiaoming WU, Elaine Yeap MONEY, Eunki HONG, Yimin GUAN, Burton JOYNER, II, Sean Terrance WEAVER, David GRAHAM, Zach REITMEIER
  • Patent number: 8541248
    Abstract: Methods and apparatus teach a substrate wafer having a plurality of plugs configured there within. The method also includes depositing and patterning a layer of a second metallic material over the substrate wafer, providing a layer of a dielectric material of a predetermined thickness over the patterned layer of the second metallic material, and conducting chemical mechanical polishing of the layer of the dielectric material to form a planarized top surface while exposing the patterned layer of the second metallic material. The method further includes cleaning the planarized top surface, depositing and patterning a resistor film over the planarized top surface, depositing one or more blanket films over the patterned resistor film, and patterning and etching the one or more blanket films. Further disclosed are planar heater structures and additional methods for fabricating the planar heater structures.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: September 24, 2013
    Assignee: Lexmark International, Inc.
    Inventors: Yimin Guan, Burton Joyner, II, Zach Reitmeier
  • Publication number: 20130083130
    Abstract: Disclosed is a method for fabricating a planar heater structure for an ejection device. The method includes providing a substrate wafer having a plurality of plugs configured therewithin. The method also includes depositing and patterning a layer of a second metallic material over the substrate wafer, providing a layer of a dielectric material of a predetermined thickness over the patterned layer of the second metallic material, and conducting chemical mechanical polishing of the layer of the dielectric material to form a planarized top surface while exposing the patterned layer of the second metallic material. The method further includes cleaning the planarized top surface, depositing and patterning a resistor film over the planarized top surface, depositing one or more blanket films over the patterned resistor film, and patterning and etching the one or more blanket films. Further disclosed are planar heater structures and additional methods for fabricating the planar heater structures.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Inventors: YIMIN GUAN, Burton Joyner, II, Zach Reitmeier
  • Publication number: 20130084662
    Abstract: Methods and apparatus teach a substrate wafer having a plurality of plugs configured there within. The method also includes depositing and patterning a layer of a second metallic material over the substrate wafer, providing a layer of a dielectric material of a predetermined thickness over the patterned layer of the second metallic material, and conducting chemical mechanical polishing of the layer of the dielectric material to form a planarized top surface while exposing the patterned layer of the second metallic material. The method further includes cleaning the planarized top surface, depositing and patterning a resistor film over the planarized top surface, depositing one or more blanket films over the patterned resistor film, and patterning and etching the one or more blanket films. Further disclosed are planar heater structures and additional methods for fabricating the planar heater structures.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Inventors: Yimin GUAN, Burton JOYNER, II, Zach REITMEIER
  • Publication number: 20120274707
    Abstract: Disclosed is an ejection device for an inkjet printer that includes an ejection chip having a substrate and at least one fluid ejecting element. The ejection device further includes a fluidic structure configured over the ejection chip. The fluidic structure includes a nozzle plate composed of an organic material and includes a plurality of nozzles. The fluidic structure further includes a flow feature layer configured in between the ejection chip and the nozzle plate. The flow feature layer is composed of an organic material and includes a plurality of flow features. Furthermore, the fluidic structure includes a liner layer encapsulating the nozzle plate. The liner layer further at least partially encapsulates each flow feature of the plurality of flow features. The liner layer is composed of an inorganic material. Further disclosed is a method for fabricating the ejection device.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Inventors: Xiaorong Cai, Jiandong Fang, Xiaoming Wu, Elaine Yeap Money, Eunki Hong, Yimin Guan, Burton Joyner, II, Sean Terrance Weaver, David Graham, Zach Reitmeier