Patents by Inventor Zach Serber

Zach Serber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220356497
    Abstract: The disclosure relates to the biosynthesis of terpenoids, such as, for example, geraniol and derivatives thereof, using genetic engineering. In particular, the disclosure relates to the biosynthesis of nepetalactol, nepetalactone, dihydronepetalactone, and derivatives thereof. The disclosure provides recombinant cells genetically engineered to produce high levels of nepetalactol, nepetalactone and/or dihydronepetalactone. The disclosure also provides methods of producing nepetalactol, nepetalactone and dihydronepetalactone using cell-based systems as well as cell-free systems.
    Type: Application
    Filed: June 26, 2020
    Publication date: November 10, 2022
    Inventors: Stefan DE KOK, Warren LAU, Fern MCSORLEY, Hermann-Josef MEYER, Zach SERBER, Grayson WAWRZYN
  • Patent number: 11193150
    Abstract: The present disclosure provides isolated nepetalactone oxidoreductase polypeptides (NORs), nepetalactol synthases (NEPSs), and related polynucleotides, engineered host cells, and cultures, as well as methods for producing NORs and NEPSs, and for using them to produce nepetalactol, nepetalactone, and dihydronepetalactone. The present disclosure also provides methods for engineering cells (e.g., microbial cells) to produce nepetalactone from a fermentation substrate such as glucose, as well as engineered cells having this capability and related cultures and methods for producing nepetalactone.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: December 7, 2021
    Assignee: ZYMERGEN INC.
    Inventors: Grayson Wawrzyn, Christine Roche, Patrick J. Westfall, Warren Lau, Savita Ganesan, Fern R. McSorley, Zach Serber
  • Publication number: 20210102193
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Application
    Filed: December 18, 2020
    Publication date: April 8, 2021
    Inventors: Zach SERBER, Erik Jedediah DEAN, Shawn MANCHESTER, Katherine GORA, Michael FLASHMAN, Erin SHELLMAN, Aaron KIMBALL, Shawn SZYJKA, Barbara FREWEN, Thomas TREYNOR, Kenneth S. BRUNO
  • Patent number: 10968445
    Abstract: The present disclosure provides machine learning techniques for computationally predicting the phenotypic performance of combinations of genetic variations and for designing new improved host cells. The machine learning models and methods described herein are host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any host cell parameter of interest.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: April 6, 2021
    Assignee: Zymergen Inc.
    Inventors: Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Publication number: 20210024918
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Application
    Filed: October 15, 2020
    Publication date: January 28, 2021
    Inventors: Zach SERBER, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Patent number: 10883101
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: January 5, 2021
    Assignee: Zymergen Inc.
    Inventors: Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Publication number: 20200370058
    Abstract: The present disclosure provides a HTP genomic engineering platform for improving Escherichia coli. that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition.
    Type: Application
    Filed: June 6, 2018
    Publication date: November 26, 2020
    Inventors: Matthew Davis, Christy Wisnewski, Patrick Westfall, Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Michael Flashman, Robert Haushalter, Stacy-Anne Morgan, Michael Blaisse, Prabha Ramakrishnan, Kyle Rothschild-Mancinelli, Youngnyun Kim
  • Publication number: 20200362376
    Abstract: The present disclosure provides isolated nepetalactone oxidoreductase polypeptides (NORs), nepetalactol synthases (NEPSs), and related polynucleotides, engineered host cells, and cultures, as well as methods for producing NORs and NEPSs, and for using them to produce nepetalactol, nepetalactone, and dihydronepetalactone. The present disclosure also provides methods for engineering cells (e.g., microbial cells) to produce nepetalactone from a fermentation substrate such as glucose, as well as engineered cells having this capability and related cultures and methods for producing nepetalactone.
    Type: Application
    Filed: May 29, 2020
    Publication date: November 19, 2020
    Applicant: Zymergen Inc.
    Inventors: Grayson Wawrzyn, Christine Roche, Patrick J. Westfall, Warren Lau, Savita Ganesan, Fern R. McSorley, Zach Serber
  • Patent number: 10808243
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: October 20, 2020
    Assignee: Zymergen Inc.
    Inventors: Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Publication number: 20200291392
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Application
    Filed: May 29, 2020
    Publication date: September 17, 2020
    Inventors: ZACH SERBER, ERIK JEDEDIAH DEAN, SHAWN MANCHESTER, KATHERINE GORA, MICHAEL FLASHMAN, ERIN SHELLMAN, AARON KIMBALL, SHAWN SZYJKA, BARBARA FREWEN, THOMAS TREYNOR, KENNETH S. BRUNO
  • Patent number: 10745694
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: August 18, 2020
    Assignee: Zymergen Inc.
    Inventors: Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Publication number: 20200239897
    Abstract: Provided are native promoters comprising polynucleotides isolated from Corynebacterium glutamicum, and mutant promoters derived therefrom, which may be used to regulate, i.e., either increase or decrease, on-pathway and/or off-pathway gene expression. Also provided are promoter ladders comprising a plurality of the promoters having incrementally increasing promoter activity. Also provided are host cells and recombinant vectors comprising the promoters, and methods of expressing ancillary genes of interest and producing biomolecules using the host cells.
    Type: Application
    Filed: June 7, 2018
    Publication date: July 30, 2020
    Inventors: Zach Serber, Katherine G. Gora, Shawn P. Manchester, Peter Enyeart, Alexander Shearer
  • Publication number: 20200239873
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Application
    Filed: April 2, 2020
    Publication date: July 30, 2020
    Inventors: Zach SERBER, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Patent number: 10696991
    Abstract: The present disclosure provides isolated nepetalactone oxidoreductase polypeptides (NORs), nepetalactol synthases (NEPSs), and related polynucleotides, engineered host cells, and cultures, as well as methods for producing NORs and NEPSs, and for using them to produce nepetalactol, nepetalactone, and dihydronepetalactone. The present disclosure also provides methods for engineering cells (e.g., microbial cells) to produce nepetalactone from a fermentation substrate such as glucose, as well as engineered cells having this capability and related cultures and methods for producing nepetalactone.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: June 30, 2020
    Assignee: Zymergen Inc.
    Inventors: Grayson Wawrzyn, Christine Roche, Patrick J. Westfall, Warren Lau, Savita Ganesan, Fern R. McSorley, Zach Serber
  • Publication number: 20200149035
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 14, 2020
    Inventors: Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Patent number: 10647980
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: May 12, 2020
    Assignee: Zymergen Inc.
    Inventors: Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Publication number: 20200048628
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 13, 2020
    Inventors: Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Publication number: 20190390237
    Abstract: The present disclosure provides isolated nepetalactone oxidoreductase polypeptides (NORs), nepetalactol synthases (NEPSs), and related polynucleotides, engineered host cells, and cultures, as well as methods for producing NORs and NEPSs, and for using them to produce nepetalactol, nepetalactone, and dihydronepetalactone. The present disclosure also provides methods for engineering cells (e.g., microbial cells) to produce nepetalactone from a fermentation substrate such as glucose, as well as engineered cells having this capability and related cultures and methods for producing nepetalactone.
    Type: Application
    Filed: August 7, 2019
    Publication date: December 26, 2019
    Inventors: Grayson Wawrzyn, Christine Roche, Patrick J. Westfall, Warren Lau, Savita Ganesan, Fern R. McSorley, Zach Serber
  • Patent number: 10457933
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: October 29, 2019
    Assignee: Zymergen Inc.
    Inventors: Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Publication number: 20190316117
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 17, 2019
    Applicant: Zymergen Inc.
    Inventors: Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno