Patents by Inventor Zachariah B. Hennighausen

Zachariah B. Hennighausen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11997934
    Abstract: A method of laser-writing submicron pixels with tunable circular polarization and write-read-erase-reuse capability on Bi2Se3/WS2 at room temperature, comprising the steps of applying a laser to the Bi2Se3/WS2, writing a submicron pixel, wherein the submicron pixel has a circular polarization, modifying the circular polarization, allowing the circular polarization to be tuned across a range of 39.9%, tuning photoluminescence intensity, and tuning photoluminescence peak position. A method of growing Bi2Se3/WS2 as a nano-material or two-dimensional heterostructure for laser-writing submicron pixels with tunable circular polarization and write-read-erase-reuse capability on the Bi2Se3/WS2 heterostructure at room temperature.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: May 28, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Zachariah B. Hennighausen, Kathleen M. McCreary, Olaf M. J. van 't Erve, Berend T. Jonker
  • Publication number: 20230264972
    Abstract: A nano-thin BixOySez low-temperature oxygen transporter membrane for oxygen transport, separation, and two-dimensional (2D) material manipulation comprising a material comprising a compound of BixOySez and R3m bismuth oxide (Bi2O3). A method of making a nano-thin BixOySez low-temperature oxygen transporter membrane for oxygen transport, separation, and two-dimensional (2D) material manipulation comprising providing an oxygen environment, providing Bi2Se3, processing the Bi2Se3 in the oxygen environment, incorporating oxygen, removing selenium, creating a structural change, and creating a compound of BixOySez and R3m bismuth oxide (Bi2O3), wherein the material transports oxygen at room temperature.
    Type: Application
    Filed: February 23, 2023
    Publication date: August 24, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Zachariah B. Hennighausen, Bethany Hudak, Olaf M.J. van 't Erve, Madeleine Phillips
  • Publication number: 20220367798
    Abstract: A method of laser-writing submicron pixels with tunable circular polarization and write-read-erase-reuse capability on Bi2Se3/WS2 at room temperature, comprising the steps of applying a laser to the Bi2Se3/WS2, writing a submicron pixel, wherein the submicron pixel has a circular polarization, modifying the circular polarization, allowing the circular polarization to be tuned across a range of 39.9%, tuning photoluminescence intensity, and tuning photoluminescence peak position. A method of growing Bi2Se3/WS2 as a nano-material or two-dimensional heterostructure for laser-writing submicron pixels with tunable circular polarization and write-read-erase-reuse capability on the Bi2Se3/WS2 heterostructure at room temperature.
    Type: Application
    Filed: March 9, 2022
    Publication date: November 17, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Zachariah B. Hennighausen, Kathleen M. McCreary, Olaf M.J. van 't Erve, Berend T. Jonker