Patents by Inventor Zachariah E. Tyree

Zachariah E. Tyree has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11300974
    Abstract: Methods and systems are provided for detecting objects within an environment of a vehicle. In one embodiment, a method includes: receiving, by a processor, image data sensed from the environment of the vehicle; determining, by a processor, an area within the image data that object identification is uncertain; controlling, by the processor, a position of a lighting device to illuminate a location in the environment of the vehicle, wherein the location is associated with the area; controlling, by the processor, a position of one or more sensors to obtain sensor data from the location of the environment of the vehicle while the lighting device is illuminating the location; identifying, by the processor, one or more objects from the sensor data; and controlling, by the processor, the vehicle based on the one or more objects.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: April 12, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lawrence A. Bush, Upali P. Mudalige, Zachariah E. Tyree, Wei Tong, Shuqing Zeng
  • Patent number: 11198418
    Abstract: A control system for a subject vehicle includes an autonomous braking system, a forward monitoring sensor and a rearward monitoring sensor. The controller monitors a first speed of a first vehicle travelling in front of the subject vehicle and a second speed of a second vehicle travelling to the rear of the subject vehicle. A first gap-closing time is determined based upon the speed of the subject vehicle and the first speed of the first vehicle. A second gap-closing time is determined based upon the speed of the subject vehicle and the second speed of the second vehicle. The controller controls the speed of the subject vehicle based upon the first gap-closing time and the second gap-closing time when one of the first gap-closing time or the second gap-closing time is less than a first threshold time.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: December 14, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Lawrence A. Bush, Zachariah E. Tyree, Prabhjot Kaur
  • Publication number: 20210146896
    Abstract: A control system for a subject vehicle includes an autonomous braking system, a forward monitoring sensor and a rearward monitoring sensor. The controller monitors a first speed of a first vehicle travelling in front of the subject vehicle and a second speed of a second vehicle travelling to the rear of the subject vehicle. A first gap-closing time is determined based upon the speed of the subject vehicle and the first speed of the first vehicle. A second gap-closing time is determined based upon the speed of the subject vehicle and the second speed of the second vehicle. The controller controls the speed of the subject vehicle based upon the first gap-closing time and the second gap-closing time when one of the first gap-closing time or the second gap-closing time is less than a first threshold time.
    Type: Application
    Filed: November 19, 2019
    Publication date: May 20, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lawrence A. Bush, Zachariah E. Tyree, Prabhjot Kaur
  • Publication number: 20210146827
    Abstract: An exemplary automotive vehicle includes a first actuator configured to control acceleration and braking of the automotive vehicle, a second actuator configured to control steering of the automotive vehicle, a vehicle sensor configured to generate data regarding the presence, location, classification, and path of detected features in a vicinity of the automotive vehicle and a controller in communication with the vehicle sensor, and the first and second actuators. The controller is configured to selectively control the first and second actuators in an autonomous mode along a first trajectory according to an automated driving system. The controller is also configured to receive the data regarding the detected features from the vehicle sensor, determine a predicted vehicle maneuver from the data regarding the detected features, map the predicted vehicle maneuver with an indication symbol, and generate a control signal to display the indication symbol.
    Type: Application
    Filed: November 20, 2019
    Publication date: May 20, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lawrence A. Bush, Zachariah E. Tyree, Prabhjot Kaur, Upali P. Mudalige
  • Publication number: 20210018928
    Abstract: Methods and systems are provided for detecting objects within an environment of a vehicle. In one embodiment, a method includes: receiving, by a processor, image data sensed from the environment of the vehicle; determining, by a processor, an area within the image data that object identification is uncertain; controlling, by the processor, a position of a lighting device to illuminate a location in the environment of the vehicle, wherein the location is associated with the area; controlling, by the processor, a position of one or more sensors to obtain sensor data from the location of the environment of the vehicle while the lighting device is illuminating the location; identifying, by the processor, one or more objects from the sensor data; and controlling, by the processor, the vehicle based on the one or more objects.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lawrence A. Bush, Upali P. Mudalige, Zachariah E. Tyree, Wei Tong, Shuqing Zeng
  • Publication number: 20200284912
    Abstract: An adaptive sensor control system for a vehicle includes a controller and a steerable sensor system. The controller generates a perception of the vehicle's environment, including providing at least one perception datum and an associated uncertainty factor for different areas within the perception of the environment of the vehicle. The controller also determines one or more relevance factor for the different areas within the perception of the environment. Furthermore, the controller generates control commands for steering the sensor system toward a physical space in the environment as a function of the uncertainty factor and one or more relevance factors. Accordingly, the sensor system obtains updated sensor input for the physical space to update the perception datum and the associated uncertainty factor for the physical space.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 10, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lawrence A. Bush, Zachariah E. Tyree, Shuqing Zeng, Upali P Mudalige
  • Publication number: 20200189459
    Abstract: A threat assessment system and method of assessing errant threat detection. The method, in one implementation, involves receiving a detection estimation from a driver of the vehicle or an object detection sensor of the vehicle, obtaining an analysis environmental camera image from a camera on the vehicle, generating a predictive saliency distribution based on the analysis environmental camera image, comparing the detection estimation received from the driver of the vehicle or the object detection sensor of the vehicle with the predictive saliency distribution, and determining a deviation between the detection estimation and the predictive saliency distribution.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 18, 2020
    Inventors: Lawrence A. Bush, Zachariah E. Tyree