Patents by Inventor Zachary BORGLIN

Zachary BORGLIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210059806
    Abstract: The techniques of this disclosure generally relate to an assembly including a single branch stent device and a modular stent device configured to be coupled to the single branch stent device. The single branch stent device includes a main body and a branch coupling extending radially from the main body. The modular stent device includes a main body configured to be coupled inside of the main body of the single branch stent device, a bypass gate extending distally from a distal end of the main body of the modular stent device, and an artery leg extending distally from the distal end of the main body of the modular stent device.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 4, 2021
    Inventors: Keith PERKINS, Zachary BORGLIN, Mark STIGER, Julie BENTON, Steven CLAESSENS, Travis ROWE, Mark YOUNG
  • Patent number: 10925714
    Abstract: The techniques of this disclosure generally relate to a variable permeability layered prosthesis including an impermeable outer layer and a permeable inner layer. The impermeable outer layer is well suited to seal a dissection opening of a dissection. The permeable inner layer allows fluid to enter into a dead space between the impermeable outer layer and the permeable inner layer. The fluid in the dead space coagulates in the dead space providing a media for tissue growth into the prosthesis. The ability of tissue to integrate into the prosthesis provides biological fixation of the prosthesis in vessels and prevents endoleaks and migration of the prosthesis.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: February 23, 2021
    Assignee: Medtronic Vascular, Inc.
    Inventors: Zachary Borglin, Keith Perkins, Julie Benton
  • Publication number: 20210030526
    Abstract: The techniques of this disclosure generally relate to a modular stent device including a main body configured to be deployed in the ascending aorta, a bypass gate configured to be deployed in the aorta, and a bifurcated contra limb. The bifurcated contra limb includes a single proximal limb that is bifurcated (split) into a first distal limb and a second distal limb. By forming the bifurcated contra limb to include a single proximal limb that is bifurcated into the distal limbs, guiding a guide wire into the relatively larger opening of bifurcated contra limb at a proximal end is simpler than guiding a guidewire into two smaller limbs extending distally from main body. Accordingly, cannulation of the bifurcated contra limb is relatively simple thus simplifying the procedure. In addition, the parallel design mimics anatomical blood vessel bifurcations to limit flow disruptions.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Inventors: Keith PERKINS, Zachary BORGLIN, Mark STIGER, Julie BENTON, Steven CLAESSENS, Travis ROWE, Mark YOUNG
  • Publication number: 20210000586
    Abstract: The techniques of this disclosure generally relate to an assembly including a single multibranch stent device. The single multibranch stent device includes a main body, a proximal coupling extending radially from the main body, and a distal coupling extending radially from the main body. The main body, the proximal coupling, and the distal coupling are permanently coupled to one another and the single multibranch stent device is a single piece. By forming the single multibranch stent device as a single piece, the single multibranch stent device can be deployed in a single deployment thus simplifying the deployment procedure.
    Type: Application
    Filed: July 3, 2019
    Publication date: January 7, 2021
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
  • Patent number: 10856965
    Abstract: A needle lattice is used to form openings within a graft material to selectively enhance permeability of a prosthesis for tissue integration therein. The needle lattice may be disposed on, for example, a surface of a roller or press. The needle lattice precisely places openings in any pattern and location, and on any textile that forms the graft material. The needle lattice can be heated to fuse the surrounding material of the openings of the textile to prevent movement of the textiles and to prevent collapse of the openings. All parameters of the openings, including varying density, patterns, and size of each opening, can be controlled, allowing for the opportunity to selectively enhance and optimize the permeability of the graft material in a vessel. The needle lattice can quickly form multiple openings within a graft material, allowing for quick manufacturing of the prosthesis.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 8, 2020
    Assignee: Medtronic Vascular, Inc.
    Inventors: Zachary Borglin, Keith Perkins, Darren Galligan, Julie Benton
  • Publication number: 20200306064
    Abstract: The techniques of this disclosure generally relate to a modular stent device that is deployed via supra aortic access through the brachiocephalic artery. The modular stent device is a base or anchor component to which additional modular stent devices can be attached to exclude diseased areas of the aorta while at the same time allowing perfusion of the left common carotid artery and the left subclavian artery.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
  • Publication number: 20200306066
    Abstract: The techniques of this disclosure generally relate to a modular stent device that is deployed into the ascending aorta via femoral access. The modular stent device is a base or anchor component to which additional modular stent devices can be attached to exclude diseased areas of the aorta while at the same time allowing perfusion of the brachiocephalic artery, the left common carotid artery, and/or the left subclavian artery.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
  • Publication number: 20190380825
    Abstract: The techniques of this disclosure generally relate to modular stent device and method of deploying the same. The method includes introducing a delivery system including the modular stent device via supra aortic access. The delivery system is advanced into the ascending aorta. Once positioned, the modular stent device is deployed from the delivery system such that an artery leg of the modular stent device engages the brachiocephalic artery and a bypass gate engages the aorta, wherein the artery leg partially collapses the bypass gate. The artery leg has a greater radial force than the bypass gate such that the artery leg remains un-collapsed and opened. Accordingly, blood flow through the artery leg and perfusion of the brachiocephalic artery and preservation of blood flow to cerebral territories including the brain is insured.
    Type: Application
    Filed: March 28, 2019
    Publication date: December 19, 2019
    Inventors: Keith Perkins, Zachary Borglin, Mathew A. Haggard
  • Publication number: 20190159882
    Abstract: The techniques of this disclosure generally relate to a prosthesis including framed biodegradable yarn graft material having a frame and biodegradable yarns combined with the frame. The biodegradable yarns seal tissue integration openings within the frame. The frame provides long term mechanical strength while the biodegradable yarns provide acute strength and impermeability to prevent endoleaks. As the biodegradable yarns degrade, the drop in textile density creates tissue integration openings, through which tissue grows. The integrate of tissue into the framed biodegradable yarn graft material provides biological fixation of the prosthesis in vessels and prevents endoleaks and migration of the prosthesis.
    Type: Application
    Filed: September 26, 2018
    Publication date: May 30, 2019
    Inventors: Keith Perkins, Zachary Borglin, Julie Benton, Matt Petruska, Darren Galligan, Samuel Robaina, Rajesh Radhakrishnan
  • Publication number: 20190159884
    Abstract: The techniques of this disclosure generally relate to prosthesis formed from a biodegradable composite yarn. The biodegradable composite yarn includes a permanent core and a biodegradable shell. The biodegradable shell slowly dissolves over a period of time when placed in a vessel. As the biodegradable shell dissolves, openings are created in the prosthesis that are filled with tissue from the vessel wall of the vessel. The integration of the tissue into the prosthesis provides biological fixation of prosthesis in the vessel and prevents endoleaks and migration of prosthesis.
    Type: Application
    Filed: September 27, 2018
    Publication date: May 30, 2019
    Inventors: Keith Perkins, Zachary Borglin, Julie Benton, Matt Petruska, Darren Galligan, Samuel Robaina, Rajesh Radhakrishnan
  • Publication number: 20190159885
    Abstract: The techniques of this disclosure generally relate to a variable permeability layered prosthesis including an impermeable outer layer and a permeable inner layer. The impermeable outer layer is well suited to seal a dissection opening of a dissection. The permeable inner layer allows fluid to enter into a dead space between the impermeable outer layer and the permeable inner layer. The fluid in the dead space coagulates in the dead space providing a media for tissue growth into the prosthesis. The ability of tissue to integrate into the prosthesis provides biological fixation of the prosthesis in vessels and prevents endoleaks and migration of the prosthesis.
    Type: Application
    Filed: October 10, 2018
    Publication date: May 30, 2019
    Inventors: Zachary Borglin, Keith Perkins, Julie Benton
  • Publication number: 20190159881
    Abstract: A laser is used to form openings within a graft material to selectively enhance permeability of a prosthesis for tissue integration therein. A feature of utilizing a laser to create the openings for tissue integration builds from its tunability. More particularly, the laser precisely places openings in any pattern and location, and on any textile that forms the graft material. Further, the power and focus of the laser is precisely adjusted to control the diameter and shape of the openings. All parameters of the openings can be controlled at will, allowing for the opportunity to selectively enhance and optimize the permeability of the graft material in a vessel.
    Type: Application
    Filed: April 11, 2018
    Publication date: May 30, 2019
    Inventors: Zachary BORGLIN, Matt PETRUSKA, Keith PERKINS, Julie BENTON
  • Publication number: 20190160208
    Abstract: The techniques of this disclosure generally relate to applying an armor coating to a graft material. The armor coating is armor, impermeable to fluid, and elastic. The armor coating seals openings within the graft material eliminating passage of fluid through the graft material.
    Type: Application
    Filed: September 26, 2018
    Publication date: May 30, 2019
    Inventors: Keith Perkins, Zachary Borglin, Julie Benton, Matt Petruska, Darren Galligan, Samuel Robaina, Rajesh Radhakrishnan
  • Publication number: 20190159883
    Abstract: A needle lattice is used to form openings within a graft material to selectively enhance permeability of a prosthesis for tissue integration therein. The needle lattice may be disposed on, for example, a surface of a roller or press. The needle lattice precisely places openings in any pattern and location, and on any textile that forms the graft material. The needle lattice can be heated to fuse the surrounding material of the openings of the textile to prevent movement of the textiles and to prevent collapse of the openings. All parameters of the openings, including varying density, patterns, and size of each opening, can be controlled, allowing for the opportunity to selectively enhance and optimize the permeability of the graft material in a vessel. The needle lattice can quickly form multiple openings within a graft material, allowing for quick manufacturing of the prosthesis.
    Type: Application
    Filed: September 27, 2018
    Publication date: May 30, 2019
    Inventors: Zachary Borglin, Keith Perkins, Darren Galligan, Julie Benton