Patents by Inventor Zachary IRWIN

Zachary IRWIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10779963
    Abstract: The present disclosure provides methods and systems for receiving, with processing circuitry of an implant device, an electrical signal from a free tissue graft attached to a portion of a nerve (e.g., a nerve branch or fascicle) through an electrical conductor in electrical communication with the free tissue graft (e.g., muscle graft), the nerve having reinnervated the free tissue graft. The electrical signal from the free tissue graft has a voltage amplitude of greater than or equal to about 150 microvolts. The processing circuitry stores signal data corresponding to the electrical signal from the free tissue graft in a memory accessible to the processing circuitry.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: September 22, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Cynthia Anne Chestek, Melanie G. Urbanchek, Paul S. Cederna, Richard Brent Gillespie, Nicholas B. Langhals, Zachary Irwin, Daniel C. Ursu
  • Publication number: 20190262145
    Abstract: The present disclosure provides methods and systems for receiving, with processing circuitry of an implant device, an electrical signal from a free tissue graft attached to a portion of a nerve (e.g., a nerve branch or fascicle) through an electrical conductor in electrical communication with the free tissue graft (e.g., muscle graft), the nerve having reinnervated the free tissue graft. The electrical signal from the free tissue graft has a voltage amplitude of greater than or equal to about 150 microvolts. The processing circuitry stores signal data corresponding to the electrical signal from the free tissue graft in a memory accessible to the processing circuitry.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 29, 2019
    Inventors: Cynthia Anne CHESTEK, Melanie G. URBANCHEK, Paul S. CEDERNA, Richard Brent GILLESPIE, Nicholas B. LANGHALS, Zachary IRWIN, Daniel C. URSU
  • Patent number: 10314725
    Abstract: The present disclosure provides methods and systems for receiving, with processing circuitry of an implant device, an electrical signal from a free tissue graft attached to a portion of a nerve (e.g., a nerve branch or fascicle) through an electrical conductor in electrical communication with the free tissue graft (e.g., muscle graft), the nerve having reinnervated the free tissue graft. The electrical signal from the free tissue graft has a voltage amplitude of greater than or equal to about 150 microvolts. The processing circuitry stores signal data corresponding to the electrical signal from the free tissue graft in a memory accessible to the processing circuitry.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: June 11, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Cynthia Anne Chestek, Melanie G. Urbanchek, Paul S. Cederna, Richard Brent Gillespie, Nicholas B. Langhals, Zachary Irwin, Daniel C. Ursu
  • Publication number: 20160143751
    Abstract: The present disclosure provides methods and systems for receiving, with processing circuitry of an implant device, an electrical signal from a free tissue graft attached to a portion of a nerve (e.g., a nerve branch or fascicle) through an electrical conductor in electrical communication with the free tissue graft (e.g., muscle graft), the nerve having reinnervated the free tissue graft. The electrical signal from the free tissue graft has a voltage amplitude of greater than or equal to about 150 microvolts. The processing circuitry stores signal data corresponding to the electrical signal from the free tissue graft in a memory accessible to the processing circuitry.
    Type: Application
    Filed: November 13, 2015
    Publication date: May 26, 2016
    Inventors: Cynthia Anne CHESTEK, Melanie G. URBANCHEK, Paul S. CEDERNA, Richard Brent GILLESPIE, Nicholas B. LANGHALS, Zachary IRWIN, Daniel C. URSU