Patents by Inventor Zachary John Snider

Zachary John Snider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11179917
    Abstract: A CMC ply assembly is disclosed including at least one matrix ply interspersed amongst a plurality of CMC plies. Each of the plurality of CMC plies includes a first matrix and a plurality of ceramic fibers. The at least one matrix ply includes a second matrix and is essentially free of ceramic fibers. The plurality of CMC plies and the at least one matrix ply are arranged in an undensified ply stack having an article conformation. A CMC article is disclosed including a plurality of densified CMC plies and at least one densified matrix ply interspersed amongst the plurality of densified CMC plies. A method for forming the CMC article is disclosed including forming, carburizing, infusing a melt infiltration agent into, and densifying the CMC ply assembly. The melt infiltration agent infuses more completely through the at least one matrix ply than through the plurality of CMC plies.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: November 23, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Troy Hafner, John McConnell Delvaux, Glenn Curtis Taxacher, Zachary John Snider
  • Patent number: 11174738
    Abstract: Aspects of the embodiments set forth a sacrificial plug system including a component having a surface and at least one cooling hole in the surface; a sacrificial plug integrally formed with the component and integrally formed in the at least one cooling hole, where the sacrificial plug includes a top portion; a cover portion; and a bottom portion, the bottom portion integrally formed, engaged to, and connected to at least one cooling hole. The sacrificial plug system also includes at least one connective member integrally formed with the bottom portion of the sacrificial plug and integral with an inner wall of each respective at least one cooling hole; each at least one connective member being severable from the respective inner wall when a force is applied to the top portion, thus permitting the sacrificial plug to be removed from the at least one respective cooling hole.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: November 16, 2021
    Assignee: General Electric Company
    Inventors: Zachary John Snider, Matthew Troy Hafner, Jeffrey Clarence Jones
  • Publication number: 20210348514
    Abstract: Aspects of the embodiments set forth a sacrificial plug system including a component having a surface and at least one cooling hole in the surface; a sacrificial plug integrally formed with the component and integrally formed in the at least one cooling hole, where the sacrificial plug includes a top portion; a cover portion; and a bottom portion, the bottom portion integrally formed, engaged to, and connected to at least one cooling hole. The sacrificial plug system also includes at least one connective member integrally formed with the bottom portion of the sacrificial plug and integral with an inner wall of each respective at least one cooling hole; each at least one connective member being severable from the respective inner wall when a force is applied to the top portion, thus permitting the sacrificial plug to be removed from the at least one respective cooling hole.
    Type: Application
    Filed: May 6, 2020
    Publication date: November 11, 2021
    Inventors: Zachary John Snider, Matthew Troy Hafner, Jeffrey Clarence Jones
  • Publication number: 20210348513
    Abstract: A conforming coating mask is used with a turbine component having a plurality of cooling holes. The conforming coating mask includes at least two anchors; a plurality of radial mask strips integrally formed with and extending between each of the at least two anchors; and at least one coating mask securing insert. Each at least one coating mask securing insert integrally formed with a respective at least one radial mask strip; wherein the plurality of radial mask strips align with and cover the plurality of cooling holes.
    Type: Application
    Filed: May 8, 2020
    Publication date: November 11, 2021
    Inventors: Jeffrey Clarence Jones, Zachary John Snider, Christopher Donald Porter, Brad Wilson VanTassel
  • Publication number: 20210270141
    Abstract: The present disclosure is directed to a turbomachine that includes a hot gas path component having an inner surface and defining a hot gas path component cavity. An impingement insert is positioned within the hot gas path component cavity. The impingement insert includes an inner surface and an outer surface and defines an impingement insert cavity and a plurality of impingement apertures fluidly coupling the impingement insert cavity and the hot gas path component cavity. A plurality of pins extends from the outer surface of the impingement insert to the inner surface of the hot gas path component.
    Type: Application
    Filed: December 11, 2020
    Publication date: September 2, 2021
    Inventors: Sandip Dutta, Benjamin Paul Lacy, Gary Michael Itzel, Zachary John Snider
  • Patent number: 11098596
    Abstract: A turbine airfoil includes a leading edge, a trailing edge, a pressure side wall extending between the leading edge and the trailing edge, a suction side wall extending between the leading edge and the trailing edge, a cooling air supply cavity disposed within the turbine airfoil, and a near wall cooling cavity disposed within the turbine airfoil and fluidly coupled to the cooling air supply cavity to receive cooling air. In addition, the near wall cooling cavity partially extends along the suction side wall from adjacent the leading edge to a location more proximal the trailing edge. Moreover, the near wall cooling cavity provides near wall cooling to a high heat load region along the suction side wall.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: August 24, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Zachary John Snider, Daniel Burnos, Lana Maria Osusky, Brian Gene Brzek, Gregory Thomas Foster
  • Publication number: 20210222566
    Abstract: A turbine rotor blade is additively manufactured and includes an airfoil body including a concave pressure side outer wall and a convex suction side outer wall that connect along leading and trailing edges. A shank is at a radial inner end of the airfoil body, and at least one angel wing extends laterally from at least one side of the shank. A coolant transfer passage is defined through the at least one angel wing. The coolant transfer passage fluidly couples a first wheel space portion defined between the shank and a first adjacent shank of a first adjacent turbine rotor blade and a second wheel space portion defined between the shank and a second adjacent shank of a second adjacent turbine rotor blade. The coolant transfer passage allows coolant to pass between wheel space portions of adjacent turbine rotor blades.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 22, 2021
    Inventor: Zachary John Snider
  • Publication number: 20210222560
    Abstract: A turbine rotor blade root is additively manufactured and includes a shank having a radially extending chamber defined therein. A blade mount is at a radial inner end of the shank. The blade mount has a hollow interior defined therein with the hollow interior in fluid communication with the radially extending chamber. A lattice support structure is disposed within the hollow interior of the blade mount.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 22, 2021
    Inventor: Zachary John Snider
  • Publication number: 20210222565
    Abstract: A turbine rotor blade is additively manufactured and includes an airfoil body with a radially extending chamber for receiving a coolant flow, a tip end at a radial outer end of the airfoil body, and a shank at a radial inner end of the airfoil body. The radially extending chamber extends at least partially into the shank to define a shank inner surface. An integral impingement cooling structure is within the radially extending chamber. The integral impingement cooling structure allows an exterior surface of a hollow body thereof to be uniformly spaced from the airfoil inner surface despite the curvature of the chamber. The turbine rotor blade has impingement cooling throughout the blade.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 22, 2021
    Inventors: Zachary John Snider, Brad Wilson VanTassel, Jeffrey Clarence Jones
  • Publication number: 20210222568
    Abstract: A turbine rotor blade is additively manufactured and includes an airfoil body with a radially extending chamber for receiving a coolant flow. A platform extends laterally outward relative to the airfoil body and terminates at at least one slash face. A cooling circuit is within the platform and is in fluid communication with a source of the coolant flow. Cooling passage(s) are in the platform and in fluid communication with the cooling circuit. The cooling passage(s) extend in a non-linear configuration from the cooling circuit to exit through the at least one slash face of the platform, providing improved cooling compared to linear cooling passages.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 22, 2021
    Inventor: Zachary John Snider
  • Patent number: 11035248
    Abstract: Turbine shrouds including shot peen screens integrally formed therein. The shroud may include a unitary body having a support portion coupled directly to a turbine casing of the turbine system, an intermediate portion integral with and extending away from the support portion, and a seal portion integral with the intermediate portion, opposite the support portion. The unitary body may also include an inlet opening(s) formed in the support portion, a plenum(s) in fluid communication with the inlet opening(s), and a cooling passage extending through the seal portion and in fluid communication with the plenum(s). Additionally, the unitary body may include a shot peen screen(s) positioned within the plenum(s) and extending within the intermediate portion. The shot peen screen(s) may include a plurality of voids formed therethrough and may prevents shot from passing through the shot peen screen(s) when performing a shot peening process on the unitary body.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: June 15, 2021
    Assignee: General Electric Company
    Inventors: Zachary John Snider, Evan John Dozier, Claire Fridtjof Lang
  • Publication number: 20210156276
    Abstract: Turbine shrouds including shot peen screens integrally formed therein. The shroud may include a unitary body having a support portion coupled directly to a turbine casing of the turbine system, an intermediate portion integral with and extending away from the support portion, and a seal portion integral with the intermediate portion, opposite the support portion. The unitary body may also include an inlet opening(s) formed in the support portion, a plenum(s) in fluid communication with the inlet opening(s), and a cooling passage extending through the seal portion and in fluid communication with the plenum(s). Additionally, the unitary body may include a shot peen screen(s) positioned within the plenum(s) and extending within the intermediate portion. The shot peen screen(s) may include a plurality of voids formed therethrough and may prevents shot from passing through the shot peen screen(s) when performing a shot peening process on the unitary body.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 27, 2021
    Inventors: Zachary John Snider, Evan John Dozier, Claire Fridtjof Lang
  • Publication number: 20210154927
    Abstract: Additively manufactured components including unitary bodies. The component may include a unitary body having a component section. The component section may include at least one passage extending at least partially through the component section. The unitary body may also include a supplemental section formed integral with the component section. The supplemental section may be disposed over the passage(s) of the component section and may include a channel extending at least partially through the supplemental section. The channel may be in fluid communication with the passage(s) of the component section. Additionally, the unitary body may include a transition conduit positioned within the component section and the supplemental section. The transition conduit may extend between the passage(s) of the component section and the channel of the supplemental section to fluidly couple the passage(s) and the channel.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 27, 2021
    Inventors: Zachary John Snider, Michael Scott Soden, Michael Robert Berry
  • Publication number: 20210123348
    Abstract: An embodiment of an independent cooling circuit for selectively delivering cooling fluid to a component of a gas turbine system includes: at least one coolant feed channel fluidly coupled to a supply of cooling fluid; and an interconnected circuit of cooling channels, including: an interconnected circuit of cooling channels embedded within an exterior wall of the component; an impingement plate; and a plurality of feed tubes connecting the impingement plate to the exterior wall of the component and fluidly coupling a supply of cooling fluid to the interconnected circuit of cooling channels; wherein the cooling fluid flows through the plurality of feed tubes into the interconnected circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels.
    Type: Application
    Filed: October 25, 2019
    Publication date: April 29, 2021
    Inventors: Matthew Troy Hafner, Lyndsay Marie Kibler, Brad Wilson VanTassel, Benjamin Paul Lacy, Zachary John Snider, Christopher Donald Porter, Srikanth Chandrudu Kottilingam
  • Patent number: 10989068
    Abstract: Turbine shrouds for turbine systems are disclosed. The turbine shrouds may include a unitary body including a forward and aft end, an outer surface facing a cooling chamber formed between the unitary body and a turbine casing of the turbine system, and an inner surface facing a hot gas flow path. The shrouds may also include a first cooling passage extending within the unitary body, and a plurality of impingement openings formed through the outer surface of the unitary body to fluidly couple the first cooling passage to the cooling chamber. Additionally, the shrouds may include a second cooling passage and/or a third cooling passage. The second cooling passage may extend adjacent the forward end and may be in fluid communication with the first cooling passage. The third cooling passage may extend adjacent the aft end, and may be in fluid communication with the first cooling passage.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: April 27, 2021
    Assignee: General Electric Company
    Inventors: Travis J Packer, Benjamin Paul Lacy, Ibrahim Sezer, Zachary John Snider, Brad Wilson VanTassel
  • Patent number: 10927693
    Abstract: A turbine shroud for turbine systems may include a unitary body including a support portion coupled directly to a turbine casing of the turbine system, and forward hook(s) and aft hook(s) formed integral with the support portion. The unitary body may also include an intermediate portion formed integral with and extending from the support portion. The intermediate portion may include a non-linear segment extending from the support portion, and a forward segment formed integral with the non-linear segment. The forward segment of the intermediate portion may be positioned axially upstream of the forward hook(s). Additionally the unitary body may include a seal portion formed integral with the intermediate portion, opposite the support portion. The seal portion may include a forward end formed integral with the intermediate portion. The forward end may be positioned axially upstream of the forward hook(s).
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: February 23, 2021
    Assignee: General Electric Company
    Inventors: Sathyanarayanan Raghavan, Gautam Suresh Naik, Prabhjot Singh, Zachary John Snider, Changjie Sun
  • Publication number: 20210010423
    Abstract: A flow regulating system for increasing a flow of cooling fluid supplied to a cooling system of a component of a gas turbine system is provided. The flow regulating system includes: a pneumatic circuit embedded within a section of the component, the pneumatic circuit including a set of interconnected pneumatic passages; and a pressure-actuated switch fluidly coupled to the pneumatic circuit. The pressure-actuated switch is activated in response to a formation of a breach in the section of the component and an exposure of at least one of the pneumatic passages of the pneumatic circuit embedded in the section of the component. The activation of the pressure-actuated switch increases the flow of cooling fluid supplied to the cooling system of the component.
    Type: Application
    Filed: July 8, 2019
    Publication date: January 14, 2021
    Inventors: Zachary John Snider, Matthew Troy Hafner, Lyndsay Marie Kibler
  • Patent number: 10844724
    Abstract: A hollowed body component made by additive manufacturing is disclosed. The hollow body has a longitudinal extent, an exterior surface and an interior surface, the interior surface having a first side and an opposing, second side. A first set of curved supports are curved along lengths thereof and extend between the first side and the opposing, second side to support the hollow body at least during the additive manufacturing thereof. Some embodiments include cooling passages open to the interior surface. Here, the curved supports extend between opposing pairs of passage-free spaces on the interior surface to support the hollow body at least during the additive manufacturing thereof. In one example, the component is an impingement insert for a hot gas path component.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: November 24, 2020
    Assignee: General Electric Company
    Inventors: Travis J Packer, Elisabeth Kraus Black, Robert William Davidoff, Zachary John Snider
  • Patent number: 10830050
    Abstract: Turbine shrouds including structural breakdown and collapsible features are disclosed. The shrouds may include a unitary body including a support portion coupled directly to a turbine casing of the turbine system, an intermediate portion integral with and extending away from the support portion, and a seal portion integral with the intermediate portion. The unitary body of the shroud may also include two opposing slash faces extending adjacent to and between the support portion and the seal portion, and a plenum extending through the support portion, the intermediate portion, and at least a portion of the seal portion, between the two opposing slash faces. Additionally, the unitary body may include a bridge member(s) formed integral with the intermediate portion, and extending partially through the plenum, and an aperture(s) formed within a portion of the plenum extending through the intermediate portion.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 10, 2020
    Assignee: General Electric Company
    Inventor: Zachary John Snider
  • Patent number: 10822986
    Abstract: Turbine shrouds including internal cooling passages are disclosed. The shrouds may include a unitary body including a support portion, an intermediate portion formed integral with and extending from the support portion, and a seal portion formed integral with the intermediate portion, opposite the support portion. The unitary body may also include two opposing slash faces extending between the support portion and the seal portion, a HGP seal slot formed on each of the two opposing slash faces, and at least one plenum and cooling passage extending through the support portion, intermediate portion, and/or the seal portion. The unitary body may also include an exhaust channel and slash face exhaust holes formed in each of the two opposing slash faces. The exhaust channel may be in fluid communication with the cooling passage(s), and the slash face exhaust holes may be in fluid communication with the exhaust channel.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 3, 2020
    Assignee: General Electric Company
    Inventors: Zachary John Snider, David Wayne Weber