Patents by Inventor Zachary K. Lee
Zachary K. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240405018Abstract: A semiconductor device includes a semiconductor substrate. A well resistor is in the semiconductor substrate. A field plate is above the well resistor. An insulator is between the well resistor and the field plate. The well resistor includes a first terminal and a second terminal. The field plate may be coupled to the first terminal or the second terminal.Type: ApplicationFiled: May 31, 2023Publication date: December 5, 2024Inventors: Zachary K Lee, Wenyuan SUN
-
Publication number: 20240145602Abstract: A semiconductor device includes a Schottky diode on a silicon-on-insulator (SOI) substrate. The Schottky diode includes a guard ring with a first guard ring segment contacting a barrier region on a first lateral side of the barrier region, and a second guard ring segment contacting the barrier region on a second, opposite, lateral side of the barrier region. The first and second guard ring segments extend deeper in the semiconductor layer than the barrier region. The Schottky diode further includes a drift region contacting the barrier region, and may include a buried layer having the same conductivity type as the barrier region, extending at least partway under the drift region. The barrier region is isolated from the substrate dielectric layer of the SOI substrate by an isolation region having the same conductivity type as the guard ring. A metal containing layer is formed on the barrier region.Type: ApplicationFiled: January 5, 2024Publication date: May 2, 2024Inventor: Zachary K. Lee
-
Publication number: 20240145603Abstract: An integrated circuit includes an SOI substrate having a semiconductor layer over a buried insulator layer; the semiconductor layer contains white space regions that include a PWELL region. An electronic device includes an NWELL region in the semiconductor layer, a dielectric over the NWELL region, and a polysilicon plate over the dielectric. A sacrificial NWELL ring is adjacent to and separated from the NWELL region by a first gap.Type: ApplicationFiled: January 9, 2024Publication date: May 2, 2024Inventors: Honglin Guo, Zachary K. Lee, Jingjing Chen
-
Patent number: 11916152Abstract: A semiconductor device includes a Schottky diode on a silicon-on-insulator (SOI) substrate. The Schottky diode includes a guard ring with a first guard ring segment contacting a barrier region on a first lateral side of the barrier region, and a second guard ring segment contacting the barrier region on a second, opposite, lateral side of the barrier region. The first and second guard ring segments extend deeper in the semiconductor layer than the barrier region. The Schottky diode further includes a drift region contacting the barrier region, and may include a buried layer having the same conductivity type as the barrier region, extending at least partway under the drift region. The barrier region is isolated from the substrate dielectric layer of the SOI substrate by an isolation region having the same conductivity type as the guard ring. A metal containing layer is formed on the barrier region.Type: GrantFiled: December 30, 2020Date of Patent: February 27, 2024Assignee: Texas Instruments IncorporatedInventor: Zachary K. Lee
-
Patent number: 11901462Abstract: An integrated circuit includes an SOI substrate having a semiconductor layer over a buried insulator layer; the semiconductor layer contains white space regions that include a PWELL region. An electronic device includes an NWELL region in the semiconductor layer, a dielectric over the NWELL region, and a polysilicon plate over the dielectric. A sacrificial NWELL ring is adjacent to and separated from the NWELL region by a first gap.Type: GrantFiled: February 5, 2022Date of Patent: February 13, 2024Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Honglin Guo, Zachary K Lee, Jingjing Chen
-
Publication number: 20230307557Abstract: An integrated circuit includes an SOI substrate having a semiconductor layer over a buried insulator layer; the semiconductor layer contains white space regions that include a PWELL region. An electronic device includes an NWELL region in the semiconductor layer, a dielectric over the NWELL region, and a polysilicon plate over the dielectric. A sacrificial NWELL ring is adjacent to and separated from the NWELL region by a first gap.Type: ApplicationFiled: February 5, 2022Publication date: September 28, 2023Inventors: Honglin Guo, Zachary K Lee, Jingjing Chen
-
Publication number: 20220209025Abstract: A semiconductor device includes a Schottky diode on a silicon-on-insulator (SOI) substrate. The Schottky diode includes a guard ring with a first guard ring segment contacting a barrier region on a first lateral side of the barrier region, and a second guard ring segment contacting the barrier region on a second, opposite, lateral side of the barrier region. The first and second guard ring segments extend deeper in the semiconductor layer than the barrier region. The Schottky diode further includes a drift region contacting the barrier region, and may include a buried layer having the same conductivity type as the barrier region, extending at least partway under the drift region. The barrier region is isolated from the substrate dielectric layer of the SOI substrate by an isolation region having the same conductivity type as the guard ring. A metal containing layer is formed on the barrier region.Type: ApplicationFiled: December 30, 2020Publication date: June 30, 2022Inventor: Zachary K. Lee
-
Patent number: 10840372Abstract: An LDMOS device includes a handle portion having a buried dielectric layer and a semiconductor layer thereon doped a second dopant type. A drift region doped a first type is within the semiconductor layer providing a drain extension. A gate stack includes a gate electrode on a gate dielectric layer on respective sides of a junction with the drift region. A DWELL region is within the semiconductor layer. A source region doped the first type is within the DWELL region. A drain region doped the first type is within the drift region. A first partial buried layer doped the second type is in a first portion of the drift region including under the gate electrode. A second partial buried layer doped the first type is in a second portion of the drift region including under the drain.Type: GrantFiled: January 8, 2018Date of Patent: November 17, 2020Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Zachary K. Lee
-
Patent number: 10319809Abstract: A semiconductor device contains an LDNMOS transistor with a lateral n-type drain drift region and a p-type RESURF region over the drain drift region. The RESURF region extends to a top surface of a substrate of the semiconductor device. The semiconductor device includes a shunt which is electrically coupled between the RESURF region and a low voltage node of the LDNMOS transistor. The shunt may be a p-type implanted layer in the substrate between the RESURF layer and a body of the LDNMOS transistor, and may be implanted concurrently with the RESURF layer. The shunt may be through an opening in the drain drift region from the RESURF layer to the substrate under the drain drift region. The shunt may be include metal interconnect elements including contacts and metal interconnect lines.Type: GrantFiled: December 15, 2017Date of Patent: June 11, 2019Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Yongxi Zhang, Philip L. Hower, John Lin, Guru Mathur, Scott G. Balster, Constantin Bulucea, Zachary K. Lee, Sameer P. Pendharkar
-
Publication number: 20180358258Abstract: A method of forming an integrated circuit includes forming ?1 hard mask layer on a device layer on a BOX layer of a SOI substrate. A patterned masking layer is used for a trench etch to simultaneously form larger and smaller area trenches through the hard mask layer, device layer and the BOX layer. A dielectric liner is formed for lining the larger and smaller area trenches. A dielectric layer is deposited for completely filling the smaller area trenches and only partially filling the larger area trenches. The larger area trenches are bottom etched through the dielectric layer to provide a top side contact to the handle portion. The handle portion at a bottom of the larger area trenches is implanted to form a handle contact, and the larger area trenches are completely filled with an electrically conductive layer to form a top side ohmic contact to the handle contact.Type: ApplicationFiled: June 9, 2017Publication date: December 13, 2018Inventors: ZACHARY K. LEE, ROBERT GRAHAM SHAW, HIDEAKI KAWAHARA, ASAD MAHMOOD HAIDER, YUJI MIZUGUCHI, HIROSHI YAMASAKI, ABBAS ALI, BRIAN GOODLIN
-
Patent number: 9991350Abstract: An semiconductor device with a low resistance sinker contact wherein the low resistance sinker contact is etched through a first doped layer and is etched into a second doped layer and wherein the first doped layer overlies the second doped layer and wherein the second doped layer is more heavily doped that the first doped layer and wherein the low resistance sinker contact is filled with a metallic material. A method for forming a semiconductor device with a low resistance sinker contact wherein the low resistance sinker contact is etched through a first doped layer and is etched into a second doped layer and wherein the first doped layer overlies the second doped layer and wherein the second doped layer is more heavily doped that the first doped layer and wherein the low resistance sinker contact is filled with a metallic material.Type: GrantFiled: June 21, 2016Date of Patent: June 5, 2018Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Hong Yang, Seetharaman Sridhar, Yufei Xiong, Yunlong Liu, Zachary K. Lee, Peng Hu
-
Publication number: 20180151725Abstract: An LDMOS device includes a handle portion having a buried dielectric layer and a semiconductor layer thereon doped a second dopant type. A drift region doped a first type is within the semiconductor layer providing a drain extension. A gate stack includes a gate electrode on a gate dielectric layer on respective sides of a junction with the drift region. A DWELL region is within the semiconductor layer. A source region doped the first type is within the DWELL region. A drain region doped the first type is within the drift region. A first partial buried layer doped the second type is in a first portion of the drift region including under the gate electrode. A second partial buried layer doped the first type is in a second portion of the drift region including under the drain.Type: ApplicationFiled: January 8, 2018Publication date: May 31, 2018Inventor: Zachary K. LEE
-
Publication number: 20180108729Abstract: A semiconductor device contains an LDNMOS transistor with a lateral n-type drain drift region and a p-type RESURF region over the drain drift region. The RESURF region extends to a top surface of a substrate of the semiconductor device. The semiconductor device includes a shunt which is electrically coupled between the RESURF region and a low voltage node of the LDNMOS transistor. The shunt may be a p-type implanted layer in the substrate between the RESURF layer and a body of the LDNMOS transistor, and may be implanted concurrently with the RESURF layer. The shunt may be through an opening in the drain drift region from the RESURF layer to the substrate under the drain drift region. The shunt may be include metal interconnect elements including contacts and metal interconnect lines.Type: ApplicationFiled: December 15, 2017Publication date: April 19, 2018Inventors: Yongxi Zhang, Philip L. Hower, John Lin, Guru Mathur, Scott G. Balster, Constantin Bulucea, Zachary K. Lee, Sameer P. Pendharkar
-
Patent number: 9905688Abstract: An LDMOS device includes a handle portion having a buried dielectric layer and a semiconductor layer thereon doped a second dopant type. A drift region doped a first type is within the semiconductor layer providing a drain extension. A gate stack includes a gate electrode on a gate dielectric layer on respective sides of a junction with the drift region. A DWELL region is within the semiconductor layer. A source region doped the first type is within the DWELL region. A drain region doped the first type is within the drift region. A first partial buried layer doped the second type is in a first portion of the drift region including under the gate electrode. A second partial buried layer doped the first type is in a second portion of the drift region including under the drain.Type: GrantFiled: January 28, 2016Date of Patent: February 27, 2018Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Zachary K. Lee
-
Patent number: 9876071Abstract: A semiconductor device contains an LDNMOS transistor with a lateral n-type drain drift region and a p-type RESURF region over the drain drift region. The RESURF region extends to a top surface of a substrate of the semiconductor device. The semiconductor device includes a shunt which is electrically coupled between the RESURF region and a low voltage node of the LDNMOS transistor. The shunt may be a p-type implanted layer in the substrate between the RESURF layer and a body of the LDNMOS transistor, and may be implanted concurrently with the RESURF layer. The shunt may be through an opening in the drain drift region from the RESURF layer to the substrate under the drain drift region. The shunt may be include metal interconnect elements including contacts and metal interconnect lines.Type: GrantFiled: February 28, 2015Date of Patent: January 23, 2018Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Yongxi Zhang, Philip L Hower, John Lin, Guru Mathur, Scott G. Balster, Constantin Bulucea, Zachary K. Lee, Sameer P Pendharkar
-
Patent number: 9825138Abstract: A method of fabricating a FET includes forming a gate on the surface of a substrate. A trench contact extends between a first region located proximate the surface of the substrate and a second region located below the first region is formed in the surface. The surface of the substrate is coated with a conductive material, wherein the conductive material at least partially covers the gate and lines the trench contact to electrically connect the first region and the second region. A void remains in the trench contact. A dielectric material is applied to the conductive material, wherein the dielectric material at least partially fills the void in the trench contact. At least a portion of the conductive material is etched from the gate.Type: GrantFiled: June 21, 2016Date of Patent: November 21, 2017Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Hong Yang, Zachary K. Lee, Yufei Xiong, Yunlong Liu, Wei Tang
-
Patent number: 9728632Abstract: A vertical DMOS device implements one or more deep silicon via (DSV) plugs, thereby significantly reducing the layout area and on-resistance (RDSON) of the device. The DSV plugs extend through a semiconductor substrate to contact a conductively doped buried diffusion region, which forms the drain of the vertical DMOS device. Methods for fabricating the vertical DMOS device are compatible with conventional sub-micron VLSI processes, such that the vertical DMOS device can be readily fabricated on the same integrated circuit as CMOS devices and analog devices, such as lateral double-diffused MOS (LDMOS) devices.Type: GrantFiled: November 30, 2014Date of Patent: August 8, 2017Assignee: Tower Semiconductor Ltd.Inventors: Sharon Levin, Zachary K. Lee, Shye Shapira
-
Publication number: 20170222042Abstract: An LDMOS device includes a handle portion having a buried dielectric layer and a semiconductor layer thereon doped a second dopant type. A drift region doped a first type is within the semiconductor layer providing a drain extension. A gate stack includes a gate electrode on a gate dielectric layer on respective sides of a junction with the drift region. A DWELL region is within the semiconductor layer. A source region doped the first type is within the DWELL region. A drain region doped the first type is within the drift region. A first partial buried layer doped the second type is in a first portion of the drift region including under the gate electrode. A second partial buried layer doped the first type is in a second portion of the drift region including under the drain.Type: ApplicationFiled: January 28, 2016Publication date: August 3, 2017Inventor: ZACHARY K. LEE
-
Publication number: 20160315159Abstract: An semiconductor device with a low resistance sinker contact wherein the low resistance sinker contact is etched through a first doped layer and is etched into a second doped layer and wherein the first doped layer overlies the second doped layer and wherein the second doped layer is more heavily doped that the first doped layer and wherein the low resistance sinker contact is filled with a metallic material.Type: ApplicationFiled: June 21, 2016Publication date: October 27, 2016Inventors: Hong YANG, Seetharaman SRIDHAR, Yufei XIONG, Yunlong LIU, Zachary K. LEE, Peng HU
-
Publication number: 20160315155Abstract: A method of fabricating a FET includes forming a gate on the surface of a substrate. A trench contact extends between a first region located proximate the surface of the substrate and a second region located below the first region is formed in the surface. The surface of the substrate is coated with a conductive material, wherein the conductive material at least partially covers the gate and lines the trench contact to electrically connect the first region and the second region. A void remains in the trench contact. A dielectric material is applied to the conductive material, wherein the dielectric material at least partially fills the void in the trench contact. At least a portion of the conductive material is etched from the gate.Type: ApplicationFiled: June 21, 2016Publication date: October 27, 2016Inventors: Hong Yang, Zachary K. Lee, Yufei Xiong, Yunlong Liu, Wei Tang