Patents by Inventor Zachary Kyle Keane

Zachary Kyle Keane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11616187
    Abstract: Test structures and methods for superconducting bump bond electrical characterization are used to verify the superconductivity of bump bonds that electrically connect two superconducting integrated circuit chips fabricated using a flip-chip process, and can also ascertain the self-inductance of bump bond(s) between chips. The structures and methods leverage a behavioral property of superconducting DC SQUIDs to modulate a critical current upon injection of magnetic flux in the SQUID loop, which behavior is not present when the SQUID is not superconducting, by including bump bond(s) within the loop, which loop is split among chips. The sensitivity of the bump bond superconductivity verification is therefore effectively perfect, independent of any multi-milliohm noise floor that may exist in measurement equipment.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: March 28, 2023
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Aurelius L. Graninger, Joel D. Strand, Micah John Atman Stoutimore, Zachary Kyle Keane, Jeffrey David Hartman, Justin C. Hackley
  • Patent number: 11431322
    Abstract: A capacitively-driven tunable coupler includes a coupling capacitor connecting an open end of a quantum object (i.e., an end of the object that cannot have a DC path to a low-voltage rail, such as a ground node, without breaking the functionality of the object) to an RF SQUID having a Josephson element capable of providing variable inductance and therefore variable coupling to another quantum object.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: August 30, 2022
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventor: Zachary Kyle Keane
  • Publication number: 20210359666
    Abstract: A capacitively-driven tunable coupler includes a coupling capacitor connecting an open end of a quantum object (i.e., an end of the object that cannot have a DC path to a low-voltage rail, such as a ground node, without breaking the functionality of the object) to an RF SQUID having a Josephson element capable of providing variable inductance and therefore variable coupling to another quantum object.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 18, 2021
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventor: Zachary Kyle Keane
  • Patent number: 11108380
    Abstract: A capacitively-driven tunable coupler includes a coupling capacitor connecting an open end of a quantum object (i.e., an end of the object that cannot have a DC path to a low-voltage rail, such as a ground node, without breaking the functionality of the object) to an RF SQUID having a Josephson element capable of providing variable inductance and therefore variable coupling to another quantum object.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: August 31, 2021
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventor: Zachary Kyle Keane
  • Publication number: 20210257532
    Abstract: Test structures and methods for superconducting bump bond electrical characterization are used to verify the superconductivity of bump bonds that electrically connect two superconducting integrated circuit chips fabricated using a flip-chip process, and can also ascertain the self-inductance of bump bond(s) between chips. The structures and methods leverage a behavioral property of superconducting DC SQUIDs to modulate a critical current upon injection of magnetic flux in the SQUID loop, which behavior is not present when the SQUID is not superconducting, by including bump bond(s) within the loop, which loop is split among chips. The sensitivity of the bump bond superconductivity verification is therefore effectively perfect, independent of any multi-milliohm noise floor that may exist in measurement equipment.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 19, 2021
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: AURELIUS L. GRANINGER, JOEL D. STRAND, MICAH JOHN ATMAN STOUTIMORE, ZACHARY KYLE KEANE, JEFFREY DAVID HARTMAN, JUSTIN C. HACKLEY
  • Patent number: 10950778
    Abstract: Test structures and methods for superconducting bump bond electrical characterization are used to verify the superconductivity of bump bonds that electrically connect two superconducting integrated circuit chips fabricated using a flip-chip process, and can also ascertain the self-inductance of bump bond(s) between chips. The structures and methods leverage a behavioral property of superconducting DC SQUIDs to modulate a critical current upon injection of magnetic flux in the SQUID loop, which behavior is not present when the SQUID is not superconducting, by including bump bond(s) within the loop, which loop is split among chips. The sensitivity of the bump bond superconductivity verification is therefore effectively perfect, independent of any multi-milliohm noise floor that may exist in measurement equipment.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: March 16, 2021
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Aurelius L. Graninger, Joel D. Strand, Micah John Atman Stoutimore, Zachary Kyle Keane, Jeffrey David Hartman, Justin C. Hackley
  • Publication number: 20200220064
    Abstract: Test structures and methods for superconducting bump bond electrical characterization are used to verify the superconductivity of bump bonds that electrically connect two superconducting integrated circuit chips fabricated using a flip-chip process, and can also ascertain the self-inductance of bump bond(s) between chips. The structures and methods leverage a behavioral property of superconducting DC SQUIDs to modulate a critical current upon injection of magnetic flux in the SQUID loop, which behavior is not present when the SQUID is not superconducting, by including bump bond(s) within the loop, which loop is split among chips. The sensitivity of the bump bond superconductivity verification is therefore effectively perfect, independent of any multi-milliohm noise floor that may exist in measurement equipment.
    Type: Application
    Filed: January 7, 2019
    Publication date: July 9, 2020
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: AURELIUS L. GRANINGER, JOEL D. STRAND, MICAH JOHN ATMAN STOUTIMORE, ZACHARY KYLE KEANE, JEFFREY DAVID HARTMAN, JUSTIN C. HACKLEY
  • Patent number: 10540603
    Abstract: Real-time reconfigurability of quantum object connectivity can be provided with one or more quantum routers that can each be configured as either or both of a single-pole double-throw switch and a cross-point switch. The quantum router includes variable-inductance coupling elements in RF-SQUIDs having inductors transformer-coupled to two control flux lines, one providing a static current and the other providing a dynamic current, the direction of which can be toggled to couple or uncouple quantum objects, such as qubits, based on the dynamic current direction to provide reconfigurable quantum routing.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: January 21, 2020
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Ofer Naaman, Zachary Kyle Keane, Micah John Atman Stoutimore, David George Ferguson
  • Publication number: 20190385088
    Abstract: Real-time reconfigurability of quantum object connectivity can be provided with one or more quantum routers that can each be configured as either or both of a single-pole double-throw switch and a cross-point switch. The quantum router includes variable-inductance coupling elements in RF-SQUIDs having inductors transformer-coupled to two control flux lines, one providing a static current and the other providing a dynamic current, the direction of which can be toggled to couple or uncouple quantum objects, such as qubits, based on the dynamic current direction to provide reconfigurable quantum routing.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 19, 2019
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: OFER NAAMAN, ZACHARY KYLE KEANE, MICAH JOHN ATMAN STOUTIMORE, DAVID GEORGE FERGUSON
  • Patent number: 10353844
    Abstract: A tunable bus-mediated coupling system is provided that includes a first input port coupled to a first end of a variable inductance coupling element through a first resonator and a second input port coupled to a second end of the variable inductance coupling element through a second resonator. The first input port is configured to be coupled to a first qubit, and the second output port is configured to be coupled to a second qubit. A controller is configured to control the inductance of the variable inductance coupling element between a low inductance state to provide strong coupling between the first qubit and the second qubit and a high inductance state to provide isolation between the first qubit and the second qubit.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: July 16, 2019
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Ofer Naaman, Zachary Kyle Keane, Micah John Atman Stoutimore, David George Ferguson
  • Publication number: 20190214971
    Abstract: A capacitively-driven tunable coupler includes a coupling capacitor connecting an open end of a quantum object (i.e., an end of the object that cannot have a DC path to a low-voltage rail, such as a ground node, without breaking the functionality of the object) to an RF SQUID having a Josephson element capable of providing variable inductance and therefore variable coupling to another quantum object.
    Type: Application
    Filed: January 11, 2018
    Publication date: July 11, 2019
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventor: ZACHARY KYLE KEANE
  • Patent number: 10164606
    Abstract: A load-compensated tunable coupler leverages a cross-bar switch and simulated loads or ballasts to provide a tunable coupling between two quantum objects that can be selectively coupled or decoupled without changing their resonant frequencies.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: December 25, 2018
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Zachary Kyle Keane, Joel D. Strand, Ofer Naaman
  • Patent number: 10158343
    Abstract: A push-pull tunable coupler includes a push transformer, a pull transformer and two compound Josephson junctions arranged in upper and lower branches. Absent biasing, the balanced push and pull of current between the branches causes current from a first object to circulate within a loop and not to be coupled to a second object. Biasing of at least one of the compound Josephson junctions unbalances the push and pull of current in the branches to couple the first and second objects. The coupler has reduced sensitivity to differential-mode noise around the off state, is completely insensitive to common-mode noise, and is capable of inverting the coupled signal with appropriate relative biasing of the compound Josephson junctions.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: December 18, 2018
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Zachary Kyle Keane, James R. Medford
  • Publication number: 20180336153
    Abstract: A tunable bus-mediated coupling system is provided that includes a first input port coupled to a first end of a variable inductance coupling element through a first resonator and a second input port coupled to a second end of the variable inductance coupling element through a second resonator. The first input port is configured to be coupled to a first qubit, and the second output port is configured to be coupled to a second qubit. A controller is configured to control the inductance of the variable inductance coupling element between a low inductance state to provide strong coupling between the first qubit and the second qubit and a high inductance state to provide isolation between the first qubit and the second qubit.
    Type: Application
    Filed: July 3, 2018
    Publication date: November 22, 2018
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: OFER NAAMAN, ZACHARY KYLE KEANE, MICAH JOHN ATMAN STOUTIMORE, DAVID GEORGE FERGUSON
  • Patent number: 10042805
    Abstract: A tunable bus-mediated coupling system is provided that includes a first input port coupled to a first end of a variable inductance coupling element through a first resonator and a second input port coupled to a second end of the variable inductance coupling element through a second resonator. The first input port is configured to be coupled to a first qubit, and the second output port is configured to be coupled to a second qubit. A controller is configured to control the inductance of the variable inductance coupling element between a low inductance state to provide strong coupling between the first qubit and the second qubit and a high inductance state to provide isolation between the first qubit and the second qubit.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: August 7, 2018
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Ofer Naaman, Zachary Kyle Keane, Micah Stoutimore, David George Ferguson
  • Publication number: 20170212860
    Abstract: A tunable bus-mediated coupling system is provided that includes a first input port coupled to a first end of a variable inductance coupling element through a first resonator and a second input port coupled to a second end of the variable inductance coupling element through a second resonator. The first input port is configured to be coupled to a first qubit, and the second output port is configured to be coupled to a second qubit. A controller is configured to control the inductance of the variable inductance coupling element between a low inductance state to provide strong coupling between the first qubit and the second qubit and a high inductance state to provide isolation between the first qubit and the second qubit.
    Type: Application
    Filed: January 21, 2016
    Publication date: July 27, 2017
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: OFER NAAMAN, ZACHARY KYLE KEANE, MICAH STOUTIMORE, DAVID GEORGE FERGUSON
  • Patent number: 9501748
    Abstract: Quantum systems are provided, including a qubit and a transmission line resonator having an associated resonant wavelength. A coupling capacitor is configured to capacitively couple the qubit to the transmission line resonator. A transformer is configured to inductively couple the qubit to the transmission line resonator. A selected one of an associated capacitance of the coupling capacitor and an associated mutual inductance of the transformer is a function of a location of the qubit along the transmission line resonator.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: November 22, 2016
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Ofer Naaman, Zachary Kyle Keane, David George Ferguson, Joel D. Strand
  • Publication number: 20160125309
    Abstract: Quantum systems are provided, including a qubit and a transmission line resonator having an associated resonant wavelength. A coupling capacitor is configured to capacitively couple the qubit to the transmission line resonator. A transformer is configured to inductively couple the qubit to the transmission line resonator. A selected one of an associated capacitance of the coupling capacitor and an associated mutual inductance of the transformer is a function of a location of the qubit along the transmission line resonator.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 5, 2016
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: OFER NAAMAN, Zachary Kyle Keane, David George Ferguson, Joel D. Strand
  • Patent number: 8223330
    Abstract: A method for producing planar extended electrodes with nanoscale spacings that exhibit very large SERS signals, with each nanoscale gap having one well-defined hot spot. The resulting highly sensitive substrate has extended metal electrodes separated by a nanoscale gap. The electrodes act as optical antennas to enhance dramatically the local electromagnetic field for purposes of spectroscopy or nonlinear optics. SERS response is consistent with a very small number of molecules in the hotspot, showing blinking and wandering of Raman lines. Sensitivity is sufficiently high that SERS from physisorbed atmospheric contaminants may be detected after minutes of exposure to ambient conditions.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: July 17, 2012
    Assignee: William Marsh Rice University
    Inventors: Douglas Natelson, Daniel Robert Ward, Zachary Kyle Keane
  • Publication number: 20120154800
    Abstract: A method for producing planar extended electrodes with nanoscale spacings that exhibit very large SERS signals, with each nanoscale gap having one well-defined hot spot. The resulting highly sensitive substrate has extended metal electrodes separated by a nanoscale gap. The electrodes act as optical antennas to enhance dramatically the local electromagnetic field for purposes of spectroscopy or nonlinear optics. SERS response is consistent with a very small number of molecules in the hotspot, showing blinking and wandering of Raman lines. Sensitivity is sufficiently high that SERS from physisorbed atmospheric contaminants may be detected after minutes of exposure to ambient conditions.
    Type: Application
    Filed: February 12, 2008
    Publication date: June 21, 2012
    Inventors: Douglas Natelson, Daniel Robert Ward, Zachary Kyle Keane