Patents by Inventor Zachary S. Kean

Zachary S. Kean has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230279165
    Abstract: A process to form a crosslinked composition comprising thermally treating a composition at a temperature ? 25° C., in the presence of moisture, and wherein the composition comprises the following components: a) an olefin/silane interpolymer, b) a cure catalyst selected from the following: i) a metal alkoxide, ii) a metal carboxylate, iii) a metal sulfonate, iv) an aryl sulfonic acid, v) a tris-aryl borane, vi) any combination of two or more from i)-v). Also, a composition comprising the following components a and b, as described above. A process to form an olefin/alkoxysilane interpolymer, and the corresponding composition, said process comprising thermally treating a composition comprising the following components: a) an olefin/silane interpolymer, b) an alcohol, and c) a Lewis acid.
    Type: Application
    Filed: June 23, 2021
    Publication date: September 7, 2023
    Applicants: Dow Global Technologies LLC, Dow Silicones Corporation
    Inventors: Jordan C. Reddel, Mark F. Sonnenschein, David S. Laitar, Andrew B. Shah, Bethany M. Neilson, Colin LiPi Shan, David D. Devore, Jozef J. I. Van Dun, Philip D. Hustad, Zhanjie Li, Zachary S. Kean, Ken Kawamoto
  • Publication number: 20230265222
    Abstract: An interpolymer, which comprises at least one siloxane group, and prepared by polymerizing a mixture comprising one or more “addition polymerizable monomers” and at least one siloxane monomer, in the presence of a catalyst system comprising a Group 3-10 metal complex, and the siloxane monomer is selected from the following Formula 1: Aa-Si(Bb)(Cc)(Hh0)—O—(Si(Dd)(Ee) (Hh1)—O)x—Si(Ff)(Gg)(Hh2), described herein. An ethylene/siloxane interpolymer comprising at least one chemical unit of Structure 1, or at least one chemical unit of Structure 2, each described herein. A process to form an interpolymer, which comprises, in polymerized form, at least one siloxane monomer, or at least one silane monomer without a siloxane linkage, said process comprising polymerizing a mixture comprising one or more “addition polymerizable monomers” and at least one monomer of Formula 4, described herein, in the presence of a catalyst system comprising a metal complex from Formula A or Formula B, each described herein.
    Type: Application
    Filed: June 23, 2021
    Publication date: August 24, 2023
    Applicants: Dow Global Technologies LLC, Dow Silicones Corporation, Rohm and Haas Company
    Inventors: Liam Spencer, Zachary S. Kean, David D. Devore, Jordan C. Reddel, Bethany M. Neilson, Matthew Olsen, Zhanjie Li, Phillip D. Hustad
  • Publication number: 20230242693
    Abstract: A process to form a crosslinked composition, said process comprising thermally treating a composition that comprises the following components: a) an olefin/silane interpolymer, b) a cure catalyst, and c) a multi-vinyl compound. A composition comprising the following components: a) an olefin/silane interpolymer, b) a cure catalyst, and c) a multi-vinyl compound.
    Type: Application
    Filed: June 23, 2021
    Publication date: August 3, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Andrew B. Shah, Jordan C. Reddel, Zachary S. Kean, Bethany M. Neilson, Gerald F. Billovits, David D. Devore, Mark F. Sonnenschein, David S. Laitar
  • Publication number: 20220213273
    Abstract: A polyorganosiloxanes has an anhydride functionality and an aromatic functionality, wherein a carbon of the aromatic functionality is separated from a carbon of a carbonyl group of the anhydride functionality by a carbon chain, wherein the polyorganosiloxane contains 5 weight-percent or more silicon atoms based on weight of the polyorganosiloxane.
    Type: Application
    Filed: August 3, 2020
    Publication date: July 7, 2022
    Inventors: Dongchan Ahn, Zachary S. Kean, Thomas H. Peterson